Cargando…

White matter and task-switching in young adults: A Diffusion Tensor Imaging study

The capacity to flexibly switch between different task rules has been previously associated with distributed fronto-parietal networks, predominantly in the left hemisphere for phasic switching sub-processes, and in the right hemisphere for more tonic aspects of task-switching, such as rule maintenan...

Descripción completa

Detalles Bibliográficos
Autores principales: Vallesi, Antonino, Mastrorilli, Eleonora, Causin, Francesco, D’Avella, Domenico, Bertoldo, Alessandra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915443/
https://www.ncbi.nlm.nih.gov/pubmed/27217212
http://dx.doi.org/10.1016/j.neuroscience.2016.05.026
Descripción
Sumario:The capacity to flexibly switch between different task rules has been previously associated with distributed fronto-parietal networks, predominantly in the left hemisphere for phasic switching sub-processes, and in the right hemisphere for more tonic aspects of task-switching, such as rule maintenance and management. It is thus likely that the white matter (WM) connectivity between these regions is critical in sustaining the flexibility required by task-switching. This study examined the relationship between WM microstructure in young adults and task-switching performance in different paradigms: classical shape-color, spatial and grammatical tasks. The main results showed an association between WM integrity in anterior portions of the corpus callosum (genu and body) and a sustained measure of task-switching performance. In particular, a higher fractional anisotropy and a lower radial diffusivity in these WM regions were associated with smaller mixing costs both in the spatial task-switching paradigm and in the shape-color one, as confirmed by a conjunction analysis. No association was found with behavioral measures obtained in the grammatical task-switching paradigm. The switch costs, a measure of phasic switching processes, were not correlated with WM microstructure in any task. This study shows that a more efficient inter-hemispheric connectivity within the frontal lobes favors sustained task-switching processes, especially with task contexts embedding non-verbal components.