Cargando…
LiPISC: A Lightweight and Flexible Method for Privacy-Aware Intersection Set Computation
Privacy-aware intersection set computation (PISC) can be modeled as secure multi-party computation. The basic idea is to compute the intersection of input sets without leaking privacy. Furthermore, PISC should be sufficiently flexible to recommend approximate intersection items. In this paper, we re...
Autores principales: | Ren, Wei, Huang, Shiyong, Ren, Yi, Choo, Kim-Kwang Raymond |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915661/ https://www.ncbi.nlm.nih.gov/pubmed/27326763 http://dx.doi.org/10.1371/journal.pone.0157752 |
Ejemplares similares
-
Security and privacy for big data, cloud computing and applications
por: Wang, Lizhe, et al.
Publicado: (2019) -
Two-Party Privacy-Preserving Set Intersection with FHE
por: Cai, Yunlu, et al.
Publicado: (2020) -
Locational privacy-preserving distance computations with intersecting sets of randomly labeled grid points
por: Schnell, Rainer, et al.
Publicado: (2021) -
Pisces Detachees
por: Mary, M
Publicado: (1965) -
Privacy-Preserving and Lightweight Selective Aggregation with Fault-Tolerance for Edge Computing-Enhanced IoT
por: Wang, Qiannan, et al.
Publicado: (2021)