Cargando…
Dissociation Dynamics of XPC-RAD23B from Damaged DNA Is a Determining Factor of NER Efficiency
XPC-RAD23B (XPC) plays a critical role in human nucleotide excision repair (hNER) as this complex recognizes DNA adducts to initiate NER. To determine the mutagenic potential of structurally different bulky DNA damages, various studies have been conducted to define the correlation of XPC-DNA damage...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915676/ https://www.ncbi.nlm.nih.gov/pubmed/27327897 http://dx.doi.org/10.1371/journal.pone.0157784 |
_version_ | 1782438719756697600 |
---|---|
author | Hilton, Benjamin Gopal, Sathyaraj Xu, Lifang Mazumder, Sharmistha Musich, Phillip R. Cho, Bongsup P. Zou, Yue |
author_facet | Hilton, Benjamin Gopal, Sathyaraj Xu, Lifang Mazumder, Sharmistha Musich, Phillip R. Cho, Bongsup P. Zou, Yue |
author_sort | Hilton, Benjamin |
collection | PubMed |
description | XPC-RAD23B (XPC) plays a critical role in human nucleotide excision repair (hNER) as this complex recognizes DNA adducts to initiate NER. To determine the mutagenic potential of structurally different bulky DNA damages, various studies have been conducted to define the correlation of XPC-DNA damage equilibrium binding affinity with NER efficiency. However, little is known about the effects of XPC-DNA damage recognition kinetics on hNER. Although association of XPC is important, our current work shows that the XPC-DNA dissociation rate also plays a pivotal role in achieving NER efficiency. We characterized for the first time the binding of XPC to mono- versus di-AAF-modified sequences by using the real time monitoring surface plasmon resonance technique. Strikingly, the half-life (t(1/2) or the retention time of XPC in association with damaged DNA) shares an inverse relationship with NER efficiency. This is particularly true when XPC remained bound to clustered adducts for a much longer period of time as compared to mono-adducts. Our results suggest that XPC dissociation from the damage site could become a rate-limiting step in NER of certain types of DNA adducts, leading to repression of NER. |
format | Online Article Text |
id | pubmed-4915676 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49156762016-07-06 Dissociation Dynamics of XPC-RAD23B from Damaged DNA Is a Determining Factor of NER Efficiency Hilton, Benjamin Gopal, Sathyaraj Xu, Lifang Mazumder, Sharmistha Musich, Phillip R. Cho, Bongsup P. Zou, Yue PLoS One Research Article XPC-RAD23B (XPC) plays a critical role in human nucleotide excision repair (hNER) as this complex recognizes DNA adducts to initiate NER. To determine the mutagenic potential of structurally different bulky DNA damages, various studies have been conducted to define the correlation of XPC-DNA damage equilibrium binding affinity with NER efficiency. However, little is known about the effects of XPC-DNA damage recognition kinetics on hNER. Although association of XPC is important, our current work shows that the XPC-DNA dissociation rate also plays a pivotal role in achieving NER efficiency. We characterized for the first time the binding of XPC to mono- versus di-AAF-modified sequences by using the real time monitoring surface plasmon resonance technique. Strikingly, the half-life (t(1/2) or the retention time of XPC in association with damaged DNA) shares an inverse relationship with NER efficiency. This is particularly true when XPC remained bound to clustered adducts for a much longer period of time as compared to mono-adducts. Our results suggest that XPC dissociation from the damage site could become a rate-limiting step in NER of certain types of DNA adducts, leading to repression of NER. Public Library of Science 2016-06-21 /pmc/articles/PMC4915676/ /pubmed/27327897 http://dx.doi.org/10.1371/journal.pone.0157784 Text en © 2016 Hilton et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hilton, Benjamin Gopal, Sathyaraj Xu, Lifang Mazumder, Sharmistha Musich, Phillip R. Cho, Bongsup P. Zou, Yue Dissociation Dynamics of XPC-RAD23B from Damaged DNA Is a Determining Factor of NER Efficiency |
title | Dissociation Dynamics of XPC-RAD23B from Damaged DNA Is a Determining Factor of NER Efficiency |
title_full | Dissociation Dynamics of XPC-RAD23B from Damaged DNA Is a Determining Factor of NER Efficiency |
title_fullStr | Dissociation Dynamics of XPC-RAD23B from Damaged DNA Is a Determining Factor of NER Efficiency |
title_full_unstemmed | Dissociation Dynamics of XPC-RAD23B from Damaged DNA Is a Determining Factor of NER Efficiency |
title_short | Dissociation Dynamics of XPC-RAD23B from Damaged DNA Is a Determining Factor of NER Efficiency |
title_sort | dissociation dynamics of xpc-rad23b from damaged dna is a determining factor of ner efficiency |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915676/ https://www.ncbi.nlm.nih.gov/pubmed/27327897 http://dx.doi.org/10.1371/journal.pone.0157784 |
work_keys_str_mv | AT hiltonbenjamin dissociationdynamicsofxpcrad23bfromdamageddnaisadeterminingfactorofnerefficiency AT gopalsathyaraj dissociationdynamicsofxpcrad23bfromdamageddnaisadeterminingfactorofnerefficiency AT xulifang dissociationdynamicsofxpcrad23bfromdamageddnaisadeterminingfactorofnerefficiency AT mazumdersharmistha dissociationdynamicsofxpcrad23bfromdamageddnaisadeterminingfactorofnerefficiency AT musichphillipr dissociationdynamicsofxpcrad23bfromdamageddnaisadeterminingfactorofnerefficiency AT chobongsupp dissociationdynamicsofxpcrad23bfromdamageddnaisadeterminingfactorofnerefficiency AT zouyue dissociationdynamicsofxpcrad23bfromdamageddnaisadeterminingfactorofnerefficiency |