Cargando…
Representative sampling of natural biofilms: influence of substratum type on the bacterial and fungal communities structure
In situ biofilm sampling is a key step for the study of natural biofilms and using methodologies that reflect natural diversity is necessary to guarantee representative sampling. Here, we focalise on the impact of the type of substrata on which biofilms grow on bacterial and fungal communities’ stru...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916114/ https://www.ncbi.nlm.nih.gov/pubmed/27390662 http://dx.doi.org/10.1186/s40064-016-2448-2 |
_version_ | 1782438774393798656 |
---|---|
author | Hellal, Jennifer Michel, Caroline Barsotti, Vanessa Laperche, Valérie Garrido, Francis Joulian, Catherine |
author_facet | Hellal, Jennifer Michel, Caroline Barsotti, Vanessa Laperche, Valérie Garrido, Francis Joulian, Catherine |
author_sort | Hellal, Jennifer |
collection | PubMed |
description | In situ biofilm sampling is a key step for the study of natural biofilms and using methodologies that reflect natural diversity is necessary to guarantee representative sampling. Here, we focalise on the impact of the type of substrata on which biofilms grow on bacterial and fungal communities’ structure. The indirect molecular approach, Denaturing Gel Gradient Electrophoresis (DGGE) of a gene fragment coding for either 16S rRNA or 28S rRNA, for bacteria or fungi respectively, was used to evaluate the variability of microbial community structures among different biofilm substrata: natural (pebbles, live plants, wood and sediment), or artificial (glass, Plexiglas(®) and sterile wood), in a small river (the Loiret, France). Multivariate statistics, band richness and diversity indexes (Shannon and Simpson) were used to highlight variations in community structure between substrata. Results showed variations of bacterial and fungal diversity between different substrata according to substratum properties/origin (natural or artificial, organic or inorganic) but there was no optimal substratum for sampling, and artificial substrata were not significantly less applicable than natural substrata. Pooling 4 different substrata types allowed a higher bacterial and fungal biodiversity recovery. Point contact sampling may thus gain in robustness by increasing the number of substrata considered. Fungal species richness was similar to the bacterial one on most substrata which suggested they should be more frequently considered in riverine biofilm studies. |
format | Online Article Text |
id | pubmed-4916114 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-49161142016-07-07 Representative sampling of natural biofilms: influence of substratum type on the bacterial and fungal communities structure Hellal, Jennifer Michel, Caroline Barsotti, Vanessa Laperche, Valérie Garrido, Francis Joulian, Catherine Springerplus Research In situ biofilm sampling is a key step for the study of natural biofilms and using methodologies that reflect natural diversity is necessary to guarantee representative sampling. Here, we focalise on the impact of the type of substrata on which biofilms grow on bacterial and fungal communities’ structure. The indirect molecular approach, Denaturing Gel Gradient Electrophoresis (DGGE) of a gene fragment coding for either 16S rRNA or 28S rRNA, for bacteria or fungi respectively, was used to evaluate the variability of microbial community structures among different biofilm substrata: natural (pebbles, live plants, wood and sediment), or artificial (glass, Plexiglas(®) and sterile wood), in a small river (the Loiret, France). Multivariate statistics, band richness and diversity indexes (Shannon and Simpson) were used to highlight variations in community structure between substrata. Results showed variations of bacterial and fungal diversity between different substrata according to substratum properties/origin (natural or artificial, organic or inorganic) but there was no optimal substratum for sampling, and artificial substrata were not significantly less applicable than natural substrata. Pooling 4 different substrata types allowed a higher bacterial and fungal biodiversity recovery. Point contact sampling may thus gain in robustness by increasing the number of substrata considered. Fungal species richness was similar to the bacterial one on most substrata which suggested they should be more frequently considered in riverine biofilm studies. Springer International Publishing 2016-06-21 /pmc/articles/PMC4916114/ /pubmed/27390662 http://dx.doi.org/10.1186/s40064-016-2448-2 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Hellal, Jennifer Michel, Caroline Barsotti, Vanessa Laperche, Valérie Garrido, Francis Joulian, Catherine Representative sampling of natural biofilms: influence of substratum type on the bacterial and fungal communities structure |
title | Representative sampling of natural biofilms: influence of substratum type on the bacterial and fungal communities structure |
title_full | Representative sampling of natural biofilms: influence of substratum type on the bacterial and fungal communities structure |
title_fullStr | Representative sampling of natural biofilms: influence of substratum type on the bacterial and fungal communities structure |
title_full_unstemmed | Representative sampling of natural biofilms: influence of substratum type on the bacterial and fungal communities structure |
title_short | Representative sampling of natural biofilms: influence of substratum type on the bacterial and fungal communities structure |
title_sort | representative sampling of natural biofilms: influence of substratum type on the bacterial and fungal communities structure |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916114/ https://www.ncbi.nlm.nih.gov/pubmed/27390662 http://dx.doi.org/10.1186/s40064-016-2448-2 |
work_keys_str_mv | AT hellaljennifer representativesamplingofnaturalbiofilmsinfluenceofsubstratumtypeonthebacterialandfungalcommunitiesstructure AT michelcaroline representativesamplingofnaturalbiofilmsinfluenceofsubstratumtypeonthebacterialandfungalcommunitiesstructure AT barsottivanessa representativesamplingofnaturalbiofilmsinfluenceofsubstratumtypeonthebacterialandfungalcommunitiesstructure AT laperchevalerie representativesamplingofnaturalbiofilmsinfluenceofsubstratumtypeonthebacterialandfungalcommunitiesstructure AT garridofrancis representativesamplingofnaturalbiofilmsinfluenceofsubstratumtypeonthebacterialandfungalcommunitiesstructure AT jouliancatherine representativesamplingofnaturalbiofilmsinfluenceofsubstratumtypeonthebacterialandfungalcommunitiesstructure |