Cargando…

Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency

PURPOSE: Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally rank...

Descripción completa

Detalles Bibliográficos
Autores principales: Bone, William P., Washington, Nicole L., Buske, Orion J., Adams, David R., Davis, Joie, Draper, David, Flynn, Elise D., Girdea, Marta, Godfrey, Rena, Golas, Gretchen, Groden, Catherine, Jacobsen, Julius, Köhler, Sebastian, Lee, Elizabeth M. J., Links, Amanda E., Markello, Thomas C., Mungall, Christopher J., Nehrebecky, Michele, Robinson, Peter N., Sincan, Murat, Soldatos, Ariane G., Tifft, Cynthia J., Toro, Camilo, Trang, Heather, Valkanas, Elise, Vasilevsky, Nicole, Wahl, Colleen, Wolfe, Lynne A., Boerkoel, Cornelius F., Brudno, Michael, Haendel, Melissa A., Gahl, William A., Smedley, Damian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916229/
https://www.ncbi.nlm.nih.gov/pubmed/26562225
http://dx.doi.org/10.1038/gim.2015.137
_version_ 1782438794227613696
author Bone, William P.
Washington, Nicole L.
Buske, Orion J.
Adams, David R.
Davis, Joie
Draper, David
Flynn, Elise D.
Girdea, Marta
Godfrey, Rena
Golas, Gretchen
Groden, Catherine
Jacobsen, Julius
Köhler, Sebastian
Lee, Elizabeth M. J.
Links, Amanda E.
Markello, Thomas C.
Mungall, Christopher J.
Nehrebecky, Michele
Robinson, Peter N.
Sincan, Murat
Soldatos, Ariane G.
Tifft, Cynthia J.
Toro, Camilo
Trang, Heather
Valkanas, Elise
Vasilevsky, Nicole
Wahl, Colleen
Wolfe, Lynne A.
Boerkoel, Cornelius F.
Brudno, Michael
Haendel, Melissa A.
Gahl, William A.
Smedley, Damian
author_facet Bone, William P.
Washington, Nicole L.
Buske, Orion J.
Adams, David R.
Davis, Joie
Draper, David
Flynn, Elise D.
Girdea, Marta
Godfrey, Rena
Golas, Gretchen
Groden, Catherine
Jacobsen, Julius
Köhler, Sebastian
Lee, Elizabeth M. J.
Links, Amanda E.
Markello, Thomas C.
Mungall, Christopher J.
Nehrebecky, Michele
Robinson, Peter N.
Sincan, Murat
Soldatos, Ariane G.
Tifft, Cynthia J.
Toro, Camilo
Trang, Heather
Valkanas, Elise
Vasilevsky, Nicole
Wahl, Colleen
Wolfe, Lynne A.
Boerkoel, Cornelius F.
Brudno, Michael
Haendel, Melissa A.
Gahl, William A.
Smedley, Damian
author_sort Bone, William P.
collection PubMed
description PURPOSE: Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally ranking putative disease-associated sequence variants improves diagnosis, particularly for patients with atypical clinical profiles. Genet Med 18 6, 608–617. METHODS: Using simulated exomes and the National Institutes of Health Undiagnosed Diseases Program (UDP) patient cohort and associated exome sequence, we tested our hypothesis using Exomiser. Exomiser ranks candidate variants based on patient phenotype similarity to (i) known disease–gene phenotypes, (ii) model organism phenotypes of candidate orthologs, and (iii) phenotypes of protein–protein association neighbors. Genet Med 18 6, 608–617. RESULTS: Benchmarking showed Exomiser ranked the causal variant as the top hit in 97% of known disease–gene associations and ranked the correct seeded variant in up to 87% when detectable disease–gene associations were unavailable. Using UDP data, Exomiser ranked the causative variant(s) within the top 10 variants for 11 previously diagnosed variants and achieved a diagnosis for 4 of 23 cases undiagnosed by clinical evaluation. Genet Med 18 6, 608–617. CONCLUSION: Structured phenotyping of patients and computational analysis are effective adjuncts for diagnosing patients with genetic disorders. Genet Med 18 6, 608–617.
format Online
Article
Text
id pubmed-4916229
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49162292016-07-07 Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency Bone, William P. Washington, Nicole L. Buske, Orion J. Adams, David R. Davis, Joie Draper, David Flynn, Elise D. Girdea, Marta Godfrey, Rena Golas, Gretchen Groden, Catherine Jacobsen, Julius Köhler, Sebastian Lee, Elizabeth M. J. Links, Amanda E. Markello, Thomas C. Mungall, Christopher J. Nehrebecky, Michele Robinson, Peter N. Sincan, Murat Soldatos, Ariane G. Tifft, Cynthia J. Toro, Camilo Trang, Heather Valkanas, Elise Vasilevsky, Nicole Wahl, Colleen Wolfe, Lynne A. Boerkoel, Cornelius F. Brudno, Michael Haendel, Melissa A. Gahl, William A. Smedley, Damian Genet Med Original Research Article PURPOSE: Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally ranking putative disease-associated sequence variants improves diagnosis, particularly for patients with atypical clinical profiles. Genet Med 18 6, 608–617. METHODS: Using simulated exomes and the National Institutes of Health Undiagnosed Diseases Program (UDP) patient cohort and associated exome sequence, we tested our hypothesis using Exomiser. Exomiser ranks candidate variants based on patient phenotype similarity to (i) known disease–gene phenotypes, (ii) model organism phenotypes of candidate orthologs, and (iii) phenotypes of protein–protein association neighbors. Genet Med 18 6, 608–617. RESULTS: Benchmarking showed Exomiser ranked the causal variant as the top hit in 97% of known disease–gene associations and ranked the correct seeded variant in up to 87% when detectable disease–gene associations were unavailable. Using UDP data, Exomiser ranked the causative variant(s) within the top 10 variants for 11 previously diagnosed variants and achieved a diagnosis for 4 of 23 cases undiagnosed by clinical evaluation. Genet Med 18 6, 608–617. CONCLUSION: Structured phenotyping of patients and computational analysis are effective adjuncts for diagnosing patients with genetic disorders. Genet Med 18 6, 608–617. Nature Publishing Group 2016-06 2015-11-12 /pmc/articles/PMC4916229/ /pubmed/26562225 http://dx.doi.org/10.1038/gim.2015.137 Text en Copyright © 2016 Official journal of the American College of Medical Genetics and Genomics http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Original Research Article
Bone, William P.
Washington, Nicole L.
Buske, Orion J.
Adams, David R.
Davis, Joie
Draper, David
Flynn, Elise D.
Girdea, Marta
Godfrey, Rena
Golas, Gretchen
Groden, Catherine
Jacobsen, Julius
Köhler, Sebastian
Lee, Elizabeth M. J.
Links, Amanda E.
Markello, Thomas C.
Mungall, Christopher J.
Nehrebecky, Michele
Robinson, Peter N.
Sincan, Murat
Soldatos, Ariane G.
Tifft, Cynthia J.
Toro, Camilo
Trang, Heather
Valkanas, Elise
Vasilevsky, Nicole
Wahl, Colleen
Wolfe, Lynne A.
Boerkoel, Cornelius F.
Brudno, Michael
Haendel, Melissa A.
Gahl, William A.
Smedley, Damian
Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency
title Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency
title_full Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency
title_fullStr Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency
title_full_unstemmed Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency
title_short Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency
title_sort computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency
topic Original Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916229/
https://www.ncbi.nlm.nih.gov/pubmed/26562225
http://dx.doi.org/10.1038/gim.2015.137
work_keys_str_mv AT bonewilliamp computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT washingtonnicolel computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT buskeorionj computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT adamsdavidr computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT davisjoie computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT draperdavid computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT flynnelised computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT girdeamarta computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT godfreyrena computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT golasgretchen computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT grodencatherine computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT jacobsenjulius computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT kohlersebastian computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT leeelizabethmj computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT linksamandae computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT markellothomasc computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT mungallchristopherj computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT nehrebeckymichele computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT robinsonpetern computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT sincanmurat computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT soldatosarianeg computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT tifftcynthiaj computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT torocamilo computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT trangheather computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT valkanaselise computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT vasilevskynicole computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT wahlcolleen computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT wolfelynnea computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT boerkoelcorneliusf computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT brudnomichael computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT haendelmelissaa computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT gahlwilliama computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency
AT smedleydamian computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency