Cargando…
Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency
PURPOSE: Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally rank...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916229/ https://www.ncbi.nlm.nih.gov/pubmed/26562225 http://dx.doi.org/10.1038/gim.2015.137 |
_version_ | 1782438794227613696 |
---|---|
author | Bone, William P. Washington, Nicole L. Buske, Orion J. Adams, David R. Davis, Joie Draper, David Flynn, Elise D. Girdea, Marta Godfrey, Rena Golas, Gretchen Groden, Catherine Jacobsen, Julius Köhler, Sebastian Lee, Elizabeth M. J. Links, Amanda E. Markello, Thomas C. Mungall, Christopher J. Nehrebecky, Michele Robinson, Peter N. Sincan, Murat Soldatos, Ariane G. Tifft, Cynthia J. Toro, Camilo Trang, Heather Valkanas, Elise Vasilevsky, Nicole Wahl, Colleen Wolfe, Lynne A. Boerkoel, Cornelius F. Brudno, Michael Haendel, Melissa A. Gahl, William A. Smedley, Damian |
author_facet | Bone, William P. Washington, Nicole L. Buske, Orion J. Adams, David R. Davis, Joie Draper, David Flynn, Elise D. Girdea, Marta Godfrey, Rena Golas, Gretchen Groden, Catherine Jacobsen, Julius Köhler, Sebastian Lee, Elizabeth M. J. Links, Amanda E. Markello, Thomas C. Mungall, Christopher J. Nehrebecky, Michele Robinson, Peter N. Sincan, Murat Soldatos, Ariane G. Tifft, Cynthia J. Toro, Camilo Trang, Heather Valkanas, Elise Vasilevsky, Nicole Wahl, Colleen Wolfe, Lynne A. Boerkoel, Cornelius F. Brudno, Michael Haendel, Melissa A. Gahl, William A. Smedley, Damian |
author_sort | Bone, William P. |
collection | PubMed |
description | PURPOSE: Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally ranking putative disease-associated sequence variants improves diagnosis, particularly for patients with atypical clinical profiles. Genet Med 18 6, 608–617. METHODS: Using simulated exomes and the National Institutes of Health Undiagnosed Diseases Program (UDP) patient cohort and associated exome sequence, we tested our hypothesis using Exomiser. Exomiser ranks candidate variants based on patient phenotype similarity to (i) known disease–gene phenotypes, (ii) model organism phenotypes of candidate orthologs, and (iii) phenotypes of protein–protein association neighbors. Genet Med 18 6, 608–617. RESULTS: Benchmarking showed Exomiser ranked the causal variant as the top hit in 97% of known disease–gene associations and ranked the correct seeded variant in up to 87% when detectable disease–gene associations were unavailable. Using UDP data, Exomiser ranked the causative variant(s) within the top 10 variants for 11 previously diagnosed variants and achieved a diagnosis for 4 of 23 cases undiagnosed by clinical evaluation. Genet Med 18 6, 608–617. CONCLUSION: Structured phenotyping of patients and computational analysis are effective adjuncts for diagnosing patients with genetic disorders. Genet Med 18 6, 608–617. |
format | Online Article Text |
id | pubmed-4916229 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-49162292016-07-07 Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency Bone, William P. Washington, Nicole L. Buske, Orion J. Adams, David R. Davis, Joie Draper, David Flynn, Elise D. Girdea, Marta Godfrey, Rena Golas, Gretchen Groden, Catherine Jacobsen, Julius Köhler, Sebastian Lee, Elizabeth M. J. Links, Amanda E. Markello, Thomas C. Mungall, Christopher J. Nehrebecky, Michele Robinson, Peter N. Sincan, Murat Soldatos, Ariane G. Tifft, Cynthia J. Toro, Camilo Trang, Heather Valkanas, Elise Vasilevsky, Nicole Wahl, Colleen Wolfe, Lynne A. Boerkoel, Cornelius F. Brudno, Michael Haendel, Melissa A. Gahl, William A. Smedley, Damian Genet Med Original Research Article PURPOSE: Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally ranking putative disease-associated sequence variants improves diagnosis, particularly for patients with atypical clinical profiles. Genet Med 18 6, 608–617. METHODS: Using simulated exomes and the National Institutes of Health Undiagnosed Diseases Program (UDP) patient cohort and associated exome sequence, we tested our hypothesis using Exomiser. Exomiser ranks candidate variants based on patient phenotype similarity to (i) known disease–gene phenotypes, (ii) model organism phenotypes of candidate orthologs, and (iii) phenotypes of protein–protein association neighbors. Genet Med 18 6, 608–617. RESULTS: Benchmarking showed Exomiser ranked the causal variant as the top hit in 97% of known disease–gene associations and ranked the correct seeded variant in up to 87% when detectable disease–gene associations were unavailable. Using UDP data, Exomiser ranked the causative variant(s) within the top 10 variants for 11 previously diagnosed variants and achieved a diagnosis for 4 of 23 cases undiagnosed by clinical evaluation. Genet Med 18 6, 608–617. CONCLUSION: Structured phenotyping of patients and computational analysis are effective adjuncts for diagnosing patients with genetic disorders. Genet Med 18 6, 608–617. Nature Publishing Group 2016-06 2015-11-12 /pmc/articles/PMC4916229/ /pubmed/26562225 http://dx.doi.org/10.1038/gim.2015.137 Text en Copyright © 2016 Official journal of the American College of Medical Genetics and Genomics http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Original Research Article Bone, William P. Washington, Nicole L. Buske, Orion J. Adams, David R. Davis, Joie Draper, David Flynn, Elise D. Girdea, Marta Godfrey, Rena Golas, Gretchen Groden, Catherine Jacobsen, Julius Köhler, Sebastian Lee, Elizabeth M. J. Links, Amanda E. Markello, Thomas C. Mungall, Christopher J. Nehrebecky, Michele Robinson, Peter N. Sincan, Murat Soldatos, Ariane G. Tifft, Cynthia J. Toro, Camilo Trang, Heather Valkanas, Elise Vasilevsky, Nicole Wahl, Colleen Wolfe, Lynne A. Boerkoel, Cornelius F. Brudno, Michael Haendel, Melissa A. Gahl, William A. Smedley, Damian Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency |
title | Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency |
title_full | Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency |
title_fullStr | Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency |
title_full_unstemmed | Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency |
title_short | Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency |
title_sort | computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916229/ https://www.ncbi.nlm.nih.gov/pubmed/26562225 http://dx.doi.org/10.1038/gim.2015.137 |
work_keys_str_mv | AT bonewilliamp computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT washingtonnicolel computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT buskeorionj computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT adamsdavidr computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT davisjoie computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT draperdavid computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT flynnelised computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT girdeamarta computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT godfreyrena computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT golasgretchen computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT grodencatherine computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT jacobsenjulius computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT kohlersebastian computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT leeelizabethmj computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT linksamandae computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT markellothomasc computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT mungallchristopherj computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT nehrebeckymichele computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT robinsonpetern computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT sincanmurat computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT soldatosarianeg computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT tifftcynthiaj computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT torocamilo computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT trangheather computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT valkanaselise computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT vasilevskynicole computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT wahlcolleen computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT wolfelynnea computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT boerkoelcorneliusf computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT brudnomichael computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT haendelmelissaa computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT gahlwilliama computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency AT smedleydamian computationalevaluationofexomesequencedatausinghumanandmodelorganismphenotypesimprovesdiagnosticefficiency |