Cargando…
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123
Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how pr...
Autores principales: | Pecevski, Dejan, Maass, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916275/ https://www.ncbi.nlm.nih.gov/pubmed/27419214 http://dx.doi.org/10.1523/ENEURO.0048-15.2016 |
Ejemplares similares
-
Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons
por: Pecevski, Dejan, et al.
Publicado: (2011) -
A Learning Theory for Reward-Modulated Spike-Timing-Dependent
Plasticity with Application to Biofeedback
por: Legenstein, Robert, et al.
Publicado: (2008) -
A Dynamic Connectome Supports the Emergence of Stable Computational Function of Neural Circuits through Reward-Based Learning
por: Kappel, David, et al.
Publicado: (2018) -
Modulation of a Single Neuron Has State-Dependent Actions on Circuit Dynamics(1,2,3)
por: Gutierrez, Gabrielle J., et al.
Publicado: (2014) -
A Structural Theory of Pitch(1,2,3)
por: Laudanski, Jonathan, et al.
Publicado: (2014)