Cargando…
Penicillin-Binding Protein Transpeptidase Signatures for Tracking and Predicting β-Lactam Resistance Levels in Streptococcus pneumoniae
β-Lactam antibiotics are the drugs of choice to treat pneumococcal infections. The spread of β-lactam-resistant pneumococci is a major concern in choosing an effective therapy for patients. Systematically tracking β-lactam resistance could benefit disease surveillance. Here we developed a classifica...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916381/ https://www.ncbi.nlm.nih.gov/pubmed/27302760 http://dx.doi.org/10.1128/mBio.00756-16 |
_version_ | 1782438818329133056 |
---|---|
author | Li, Yuan Metcalf, Benjamin J. Chochua, Sopio Li, Zhongya Gertz, Robert E. Walker, Hollis Hawkins, Paulina A. Tran, Theresa Whitney, Cynthia G. McGee, Lesley Beall, Bernard W. |
author_facet | Li, Yuan Metcalf, Benjamin J. Chochua, Sopio Li, Zhongya Gertz, Robert E. Walker, Hollis Hawkins, Paulina A. Tran, Theresa Whitney, Cynthia G. McGee, Lesley Beall, Bernard W. |
author_sort | Li, Yuan |
collection | PubMed |
description | β-Lactam antibiotics are the drugs of choice to treat pneumococcal infections. The spread of β-lactam-resistant pneumococci is a major concern in choosing an effective therapy for patients. Systematically tracking β-lactam resistance could benefit disease surveillance. Here we developed a classification system in which a pneumococcal isolate is assigned to a “PBP type” based on sequence signatures in the transpeptidase domains (TPDs) of the three critical penicillin-binding proteins (PBPs), PBP1a, PBP2b, and PBP2x. We identified 307 unique PBP types from 2,528 invasive pneumococcal isolates, which had known MICs to six β-lactams based on broth microdilution. We found that increased β-lactam MICs strongly correlated with PBP types containing divergent TPD sequences. The PBP type explained 94 to 99% of variation in MICs both before and after accounting for genomic backgrounds defined by multilocus sequence typing, indicating that genomic backgrounds made little independent contribution to β-lactam MICs at the population level. We further developed and evaluated predictive models of MICs based on PBP type. Compared to microdilution MICs, MICs predicted by PBP type showed essential agreement (MICs agree within 1 dilution) of >98%, category agreement (interpretive results agree) of >94%, a major discrepancy (sensitive isolate predicted as resistant) rate of <3%, and a very major discrepancy (resistant isolate predicted as sensitive) rate of <2% for all six β-lactams. Thus, the PBP transpeptidase signatures are robust indicators of MICs to different β-lactam antibiotics in clinical pneumococcal isolates and serve as an accurate alternative to phenotypic susceptibility testing. |
format | Online Article Text |
id | pubmed-4916381 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-49163812016-06-23 Penicillin-Binding Protein Transpeptidase Signatures for Tracking and Predicting β-Lactam Resistance Levels in Streptococcus pneumoniae Li, Yuan Metcalf, Benjamin J. Chochua, Sopio Li, Zhongya Gertz, Robert E. Walker, Hollis Hawkins, Paulina A. Tran, Theresa Whitney, Cynthia G. McGee, Lesley Beall, Bernard W. mBio Research Article β-Lactam antibiotics are the drugs of choice to treat pneumococcal infections. The spread of β-lactam-resistant pneumococci is a major concern in choosing an effective therapy for patients. Systematically tracking β-lactam resistance could benefit disease surveillance. Here we developed a classification system in which a pneumococcal isolate is assigned to a “PBP type” based on sequence signatures in the transpeptidase domains (TPDs) of the three critical penicillin-binding proteins (PBPs), PBP1a, PBP2b, and PBP2x. We identified 307 unique PBP types from 2,528 invasive pneumococcal isolates, which had known MICs to six β-lactams based on broth microdilution. We found that increased β-lactam MICs strongly correlated with PBP types containing divergent TPD sequences. The PBP type explained 94 to 99% of variation in MICs both before and after accounting for genomic backgrounds defined by multilocus sequence typing, indicating that genomic backgrounds made little independent contribution to β-lactam MICs at the population level. We further developed and evaluated predictive models of MICs based on PBP type. Compared to microdilution MICs, MICs predicted by PBP type showed essential agreement (MICs agree within 1 dilution) of >98%, category agreement (interpretive results agree) of >94%, a major discrepancy (sensitive isolate predicted as resistant) rate of <3%, and a very major discrepancy (resistant isolate predicted as sensitive) rate of <2% for all six β-lactams. Thus, the PBP transpeptidase signatures are robust indicators of MICs to different β-lactam antibiotics in clinical pneumococcal isolates and serve as an accurate alternative to phenotypic susceptibility testing. American Society for Microbiology 2016-06-14 /pmc/articles/PMC4916381/ /pubmed/27302760 http://dx.doi.org/10.1128/mBio.00756-16 Text en Copyright © 2016 Li et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Li, Yuan Metcalf, Benjamin J. Chochua, Sopio Li, Zhongya Gertz, Robert E. Walker, Hollis Hawkins, Paulina A. Tran, Theresa Whitney, Cynthia G. McGee, Lesley Beall, Bernard W. Penicillin-Binding Protein Transpeptidase Signatures for Tracking and Predicting β-Lactam Resistance Levels in Streptococcus pneumoniae |
title | Penicillin-Binding Protein Transpeptidase Signatures for Tracking and Predicting β-Lactam Resistance Levels in Streptococcus pneumoniae |
title_full | Penicillin-Binding Protein Transpeptidase Signatures for Tracking and Predicting β-Lactam Resistance Levels in Streptococcus pneumoniae |
title_fullStr | Penicillin-Binding Protein Transpeptidase Signatures for Tracking and Predicting β-Lactam Resistance Levels in Streptococcus pneumoniae |
title_full_unstemmed | Penicillin-Binding Protein Transpeptidase Signatures for Tracking and Predicting β-Lactam Resistance Levels in Streptococcus pneumoniae |
title_short | Penicillin-Binding Protein Transpeptidase Signatures for Tracking and Predicting β-Lactam Resistance Levels in Streptococcus pneumoniae |
title_sort | penicillin-binding protein transpeptidase signatures for tracking and predicting β-lactam resistance levels in streptococcus pneumoniae |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916381/ https://www.ncbi.nlm.nih.gov/pubmed/27302760 http://dx.doi.org/10.1128/mBio.00756-16 |
work_keys_str_mv | AT liyuan penicillinbindingproteintranspeptidasesignaturesfortrackingandpredictingblactamresistancelevelsinstreptococcuspneumoniae AT metcalfbenjaminj penicillinbindingproteintranspeptidasesignaturesfortrackingandpredictingblactamresistancelevelsinstreptococcuspneumoniae AT chochuasopio penicillinbindingproteintranspeptidasesignaturesfortrackingandpredictingblactamresistancelevelsinstreptococcuspneumoniae AT lizhongya penicillinbindingproteintranspeptidasesignaturesfortrackingandpredictingblactamresistancelevelsinstreptococcuspneumoniae AT gertzroberte penicillinbindingproteintranspeptidasesignaturesfortrackingandpredictingblactamresistancelevelsinstreptococcuspneumoniae AT walkerhollis penicillinbindingproteintranspeptidasesignaturesfortrackingandpredictingblactamresistancelevelsinstreptococcuspneumoniae AT hawkinspaulinaa penicillinbindingproteintranspeptidasesignaturesfortrackingandpredictingblactamresistancelevelsinstreptococcuspneumoniae AT trantheresa penicillinbindingproteintranspeptidasesignaturesfortrackingandpredictingblactamresistancelevelsinstreptococcuspneumoniae AT whitneycynthiag penicillinbindingproteintranspeptidasesignaturesfortrackingandpredictingblactamresistancelevelsinstreptococcuspneumoniae AT mcgeelesley penicillinbindingproteintranspeptidasesignaturesfortrackingandpredictingblactamresistancelevelsinstreptococcuspneumoniae AT beallbernardw penicillinbindingproteintranspeptidasesignaturesfortrackingandpredictingblactamresistancelevelsinstreptococcuspneumoniae |