Cargando…
A Fuzzy Permutation Method for False Discovery Rate Control
Biomedical researchers often encounter the large-p-small-n situations—a great number of variables are measured/recorded for only a few subjects. The authors propose a fuzzy permutation method to address the multiple testing problem for small sample size studies. The method introduces fuzziness into...
Autores principales: | Yang, Ya-Hui, Lin, Wan-Yu, Lee, Wen-Chung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916423/ https://www.ncbi.nlm.nih.gov/pubmed/27328860 http://dx.doi.org/10.1038/srep28507 |
Ejemplares similares
-
Null-free False Discovery Rate Control Using Decoy Permutations
por: He, Kun, et al.
Publicado: (2022) -
On correcting the overestimation of the permutation-based false discovery rate estimator
por: Jiao, Shuo, et al.
Publicado: (2008) -
Importance of presenting the variability of the false discovery rate control
por: Lin, Yi-Ting, et al.
Publicado: (2015) -
Improving Power of Genome-Wide Association Studies with Weighted False Discovery Rate Control and Prioritized Subset Analysis
por: Lin, Wan-Yu, et al.
Publicado: (2012) -
Controlling the Rate of GWAS False Discoveries
por: Brzyski, Damian, et al.
Publicado: (2017)