Cargando…
PEDLA: predicting enhancers with a deep learning-based algorithmic framework
Transcriptional enhancers are non-coding segments of DNA that play a central role in the spatiotemporal regulation of gene expression programs. However, systematically and precisely predicting enhancers remain a major challenge. Although existing methods have achieved some success in enhancer predic...
Autores principales: | Liu, Feng, Li, Hao, Ren, Chao, Bo, Xiaochen, Shu, Wenjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916453/ https://www.ncbi.nlm.nih.gov/pubmed/27329130 http://dx.doi.org/10.1038/srep28517 |
Ejemplares similares
-
De novo identification of replication-timing domains in the human genome by deep learning
por: Liu, Feng, et al.
Publicado: (2016) -
An Algorithm Framework for Drug-Induced Liver Injury Prediction Based on Genetic Algorithm and Ensemble Learning
por: Yan, Bowei, et al.
Publicado: (2022) -
Deep Learning and Its Applications in Biomedicine
por: Cao, Chensi, et al.
Publicado: (2018) -
Predicting glaucoma progression using deep learning framework guided by generative algorithm
por: Hussain, Shaista, et al.
Publicado: (2023) -
Accurate identification of RNA editing sites from primitive sequence with deep neural networks
por: Ouyang, Zhangyi, et al.
Publicado: (2018)