Cargando…
Multifarious topological quantum phase transitions in two-dimensional topological superconductors
We study the two-dimensional topological superconductors of spinless fermions in a checkerboard-lattice Chern-insulator model. With the short-range p-wave superconducting pairing, multifarious topological quantum phase transitions have been found and several phases with high Chern numbers have been...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916467/ https://www.ncbi.nlm.nih.gov/pubmed/27329219 http://dx.doi.org/10.1038/srep28471 |
Sumario: | We study the two-dimensional topological superconductors of spinless fermions in a checkerboard-lattice Chern-insulator model. With the short-range p-wave superconducting pairing, multifarious topological quantum phase transitions have been found and several phases with high Chern numbers have been observed. We have established a rich phase diagram for these topological superconducting states. A finite-size checkerboard-lattice cylinder with a harmonic trap potential has been further investigated. Based upon the self-consistent numerical calculations of the Bogoliubov-de Gennes equations, various phase transitions have also been identified at different regions of the system. Multiple pairs of Majorana fermions are found to be well-separated and localized at the phase boundaries between the phases characterized by different Chern numbers. |
---|