Cargando…

Comparative Study on the Transcriptome of Maize Mature Embryos from Two China Elite Hybrids Zhengdan958 and Anyu5

Zhengdan958 and Anyu5 are two elite maize hybrids of China, which manifest similar paternal lines (Chang7-2) but different maternal lines (Zheng58 and Ye478). Zhengdan958 has a 10–15% yield advantage over Anyu5. In this study, we applied digital gene expression technology to analyze transcriptomes o...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Juan, Li, Jingjing, Cao, Yanyong, Wang, Lifeng, Wang, Fei, Wang, Hao, Li, Huiyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917089/
https://www.ncbi.nlm.nih.gov/pubmed/27332982
http://dx.doi.org/10.1371/journal.pone.0158028
_version_ 1782438906150518784
author Ma, Juan
Li, Jingjing
Cao, Yanyong
Wang, Lifeng
Wang, Fei
Wang, Hao
Li, Huiyong
author_facet Ma, Juan
Li, Jingjing
Cao, Yanyong
Wang, Lifeng
Wang, Fei
Wang, Hao
Li, Huiyong
author_sort Ma, Juan
collection PubMed
description Zhengdan958 and Anyu5 are two elite maize hybrids of China, which manifest similar paternal lines (Chang7-2) but different maternal lines (Zheng58 and Ye478). Zhengdan958 has a 10–15% yield advantage over Anyu5. In this study, we applied digital gene expression technology to analyze transcriptomes of mature embryos from the two hybrids and their parents, aimed to investigate molecular mechanism of heterosis and genetic effects of maternal lines. Results showed that 71.66% and 49.70% of differentially expressed genes exhibited non-additive expression in Zhengdan958 and Anyu5, respectively. The number of non-additive genes involved in abiotic and biotic stress responses in Zhengdan958 was higher than that in Anyu5, which was in agreement with their phenotypic performance. Furthermore, common over-dominance and under-dominance genes (137 and 162, respectively) between the two hybrids focused on plant development and abiotic stress response. Zhengdan958 contained 97 maternal expression-level dominance (maternal-ELD) genes, and the number was higher than that of Anyu5 (45). Common up-regulated maternal-ELD genes were significantly enriched in meristem and shoot development while common down-regulated maternal-ELD genes were involved in pyruvate metabolic process, negative regulation of catalytic activity and response to stress. Therefore, non-additive genes mainly contribute to heterosis in Zhengdan958, including many genes for plant development, abiotic and biotic stress responses. Maternal effects may play important roles in maize heterosis.
format Online
Article
Text
id pubmed-4917089
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-49170892016-07-08 Comparative Study on the Transcriptome of Maize Mature Embryos from Two China Elite Hybrids Zhengdan958 and Anyu5 Ma, Juan Li, Jingjing Cao, Yanyong Wang, Lifeng Wang, Fei Wang, Hao Li, Huiyong PLoS One Research Article Zhengdan958 and Anyu5 are two elite maize hybrids of China, which manifest similar paternal lines (Chang7-2) but different maternal lines (Zheng58 and Ye478). Zhengdan958 has a 10–15% yield advantage over Anyu5. In this study, we applied digital gene expression technology to analyze transcriptomes of mature embryos from the two hybrids and their parents, aimed to investigate molecular mechanism of heterosis and genetic effects of maternal lines. Results showed that 71.66% and 49.70% of differentially expressed genes exhibited non-additive expression in Zhengdan958 and Anyu5, respectively. The number of non-additive genes involved in abiotic and biotic stress responses in Zhengdan958 was higher than that in Anyu5, which was in agreement with their phenotypic performance. Furthermore, common over-dominance and under-dominance genes (137 and 162, respectively) between the two hybrids focused on plant development and abiotic stress response. Zhengdan958 contained 97 maternal expression-level dominance (maternal-ELD) genes, and the number was higher than that of Anyu5 (45). Common up-regulated maternal-ELD genes were significantly enriched in meristem and shoot development while common down-regulated maternal-ELD genes were involved in pyruvate metabolic process, negative regulation of catalytic activity and response to stress. Therefore, non-additive genes mainly contribute to heterosis in Zhengdan958, including many genes for plant development, abiotic and biotic stress responses. Maternal effects may play important roles in maize heterosis. Public Library of Science 2016-06-22 /pmc/articles/PMC4917089/ /pubmed/27332982 http://dx.doi.org/10.1371/journal.pone.0158028 Text en © 2016 Ma et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Ma, Juan
Li, Jingjing
Cao, Yanyong
Wang, Lifeng
Wang, Fei
Wang, Hao
Li, Huiyong
Comparative Study on the Transcriptome of Maize Mature Embryos from Two China Elite Hybrids Zhengdan958 and Anyu5
title Comparative Study on the Transcriptome of Maize Mature Embryos from Two China Elite Hybrids Zhengdan958 and Anyu5
title_full Comparative Study on the Transcriptome of Maize Mature Embryos from Two China Elite Hybrids Zhengdan958 and Anyu5
title_fullStr Comparative Study on the Transcriptome of Maize Mature Embryos from Two China Elite Hybrids Zhengdan958 and Anyu5
title_full_unstemmed Comparative Study on the Transcriptome of Maize Mature Embryos from Two China Elite Hybrids Zhengdan958 and Anyu5
title_short Comparative Study on the Transcriptome of Maize Mature Embryos from Two China Elite Hybrids Zhengdan958 and Anyu5
title_sort comparative study on the transcriptome of maize mature embryos from two china elite hybrids zhengdan958 and anyu5
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917089/
https://www.ncbi.nlm.nih.gov/pubmed/27332982
http://dx.doi.org/10.1371/journal.pone.0158028
work_keys_str_mv AT majuan comparativestudyonthetranscriptomeofmaizematureembryosfromtwochinaelitehybridszhengdan958andanyu5
AT lijingjing comparativestudyonthetranscriptomeofmaizematureembryosfromtwochinaelitehybridszhengdan958andanyu5
AT caoyanyong comparativestudyonthetranscriptomeofmaizematureembryosfromtwochinaelitehybridszhengdan958andanyu5
AT wanglifeng comparativestudyonthetranscriptomeofmaizematureembryosfromtwochinaelitehybridszhengdan958andanyu5
AT wangfei comparativestudyonthetranscriptomeofmaizematureembryosfromtwochinaelitehybridszhengdan958andanyu5
AT wanghao comparativestudyonthetranscriptomeofmaizematureembryosfromtwochinaelitehybridszhengdan958andanyu5
AT lihuiyong comparativestudyonthetranscriptomeofmaizematureembryosfromtwochinaelitehybridszhengdan958andanyu5