Cargando…

Intrathecally Transplanting Mesenchymal Stem Cells (MSCs) Activates ERK1/2 in Spinal Cords of Ischemia-Reperfusion Injury Rats and Improves Nerve Function

BACKGROUND: We investigated whether an intrathecal transplantation of mesenchymal stem cells (MSCs) activates extracellular adjusting protein kinase1 and 2(ERK1/2) in the spinal cords of rats following an ischemia-reperfusion injury, resulting in improved spinal cord function and inhibition of apopt...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yonghong, Liu, He, Ma, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917313/
https://www.ncbi.nlm.nih.gov/pubmed/27135658
http://dx.doi.org/10.12659/MSM.896503
_version_ 1782438932736114688
author Wang, Yonghong
Liu, He
Ma, Hong
author_facet Wang, Yonghong
Liu, He
Ma, Hong
author_sort Wang, Yonghong
collection PubMed
description BACKGROUND: We investigated whether an intrathecal transplantation of mesenchymal stem cells (MSCs) activates extracellular adjusting protein kinase1 and 2(ERK1/2) in the spinal cords of rats following an ischemia-reperfusion injury, resulting in improved spinal cord function and inhibition of apoptosis. MATERIAL/METHODS: We observed the relationship between the activation of ERK1/2 in the rat spinal cord and intrathecal transplantation of MSCs, as well as the effect of U0126, a MEK1/2 (upstream protein of ERK1/2) inhibitor, on a spinal cord ischemia-reperfusion injury model in rats using Basso Beattie Bresnahan (BBB) scoring, somatosensory evoked potentials (SSEPs), immunohistochemistry, and Western blot analysis. RESULTS: After transplantation of MSCs, the lower limb motor function score increased, and the incubation period of SSEPs and amplitude were improved. Moreover, following transplantation of MSCs, Bcl2 expression increased, whereas Bax expression decreased after reperfusion. Transplantation of MSCs significantly enhanced pERK1/2 expression in the spinal cord, as well as pERK1/2 in immunoreactive cells located in the grey matter of the L4/5 levels of the spinal cord, following ischemia reperfusion injury in rats. The effective dose of U0126 required to inhibit pERK1/2 expression was 200 μg/kg. Bcl-2 decreased and the level of Bax expression increased in the spinal cord after ischemia reperfusion injury, and the protective effects of MSCs were attenuated. CONCLUSIONS: Our findings suggest that intrathecal transplantation of MSCs activates ERK1/2 in the spinal cord following ischemia reperfusion injury, partially improves spinal cord function, and inhibits apoptosis in rats.
format Online
Article
Text
id pubmed-4917313
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher International Scientific Literature, Inc.
record_format MEDLINE/PubMed
spelling pubmed-49173132016-06-30 Intrathecally Transplanting Mesenchymal Stem Cells (MSCs) Activates ERK1/2 in Spinal Cords of Ischemia-Reperfusion Injury Rats and Improves Nerve Function Wang, Yonghong Liu, He Ma, Hong Med Sci Monit Animal Study BACKGROUND: We investigated whether an intrathecal transplantation of mesenchymal stem cells (MSCs) activates extracellular adjusting protein kinase1 and 2(ERK1/2) in the spinal cords of rats following an ischemia-reperfusion injury, resulting in improved spinal cord function and inhibition of apoptosis. MATERIAL/METHODS: We observed the relationship between the activation of ERK1/2 in the rat spinal cord and intrathecal transplantation of MSCs, as well as the effect of U0126, a MEK1/2 (upstream protein of ERK1/2) inhibitor, on a spinal cord ischemia-reperfusion injury model in rats using Basso Beattie Bresnahan (BBB) scoring, somatosensory evoked potentials (SSEPs), immunohistochemistry, and Western blot analysis. RESULTS: After transplantation of MSCs, the lower limb motor function score increased, and the incubation period of SSEPs and amplitude were improved. Moreover, following transplantation of MSCs, Bcl2 expression increased, whereas Bax expression decreased after reperfusion. Transplantation of MSCs significantly enhanced pERK1/2 expression in the spinal cord, as well as pERK1/2 in immunoreactive cells located in the grey matter of the L4/5 levels of the spinal cord, following ischemia reperfusion injury in rats. The effective dose of U0126 required to inhibit pERK1/2 expression was 200 μg/kg. Bcl-2 decreased and the level of Bax expression increased in the spinal cord after ischemia reperfusion injury, and the protective effects of MSCs were attenuated. CONCLUSIONS: Our findings suggest that intrathecal transplantation of MSCs activates ERK1/2 in the spinal cord following ischemia reperfusion injury, partially improves spinal cord function, and inhibits apoptosis in rats. International Scientific Literature, Inc. 2016-05-02 /pmc/articles/PMC4917313/ /pubmed/27135658 http://dx.doi.org/10.12659/MSM.896503 Text en © Med Sci Monit, 2016 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
spellingShingle Animal Study
Wang, Yonghong
Liu, He
Ma, Hong
Intrathecally Transplanting Mesenchymal Stem Cells (MSCs) Activates ERK1/2 in Spinal Cords of Ischemia-Reperfusion Injury Rats and Improves Nerve Function
title Intrathecally Transplanting Mesenchymal Stem Cells (MSCs) Activates ERK1/2 in Spinal Cords of Ischemia-Reperfusion Injury Rats and Improves Nerve Function
title_full Intrathecally Transplanting Mesenchymal Stem Cells (MSCs) Activates ERK1/2 in Spinal Cords of Ischemia-Reperfusion Injury Rats and Improves Nerve Function
title_fullStr Intrathecally Transplanting Mesenchymal Stem Cells (MSCs) Activates ERK1/2 in Spinal Cords of Ischemia-Reperfusion Injury Rats and Improves Nerve Function
title_full_unstemmed Intrathecally Transplanting Mesenchymal Stem Cells (MSCs) Activates ERK1/2 in Spinal Cords of Ischemia-Reperfusion Injury Rats and Improves Nerve Function
title_short Intrathecally Transplanting Mesenchymal Stem Cells (MSCs) Activates ERK1/2 in Spinal Cords of Ischemia-Reperfusion Injury Rats and Improves Nerve Function
title_sort intrathecally transplanting mesenchymal stem cells (mscs) activates erk1/2 in spinal cords of ischemia-reperfusion injury rats and improves nerve function
topic Animal Study
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917313/
https://www.ncbi.nlm.nih.gov/pubmed/27135658
http://dx.doi.org/10.12659/MSM.896503
work_keys_str_mv AT wangyonghong intrathecallytransplantingmesenchymalstemcellsmscsactivateserk12inspinalcordsofischemiareperfusioninjuryratsandimprovesnervefunction
AT liuhe intrathecallytransplantingmesenchymalstemcellsmscsactivateserk12inspinalcordsofischemiareperfusioninjuryratsandimprovesnervefunction
AT mahong intrathecallytransplantingmesenchymalstemcellsmscsactivateserk12inspinalcordsofischemiareperfusioninjuryratsandimprovesnervefunction