Cargando…
Ideals and primitive elements of some relatively free Lie algebras
Let F be a free Lie algebra of finite rank over a field K. We prove that if an ideal [Formula: see text] of the algebra [Formula: see text] contains a primitive element [Formula: see text] then the element [Formula: see text] is primitive. We also show that, in the Lie algebra [Formula: see text] th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917519/ https://www.ncbi.nlm.nih.gov/pubmed/27386282 http://dx.doi.org/10.1186/s40064-016-2545-2 |
_version_ | 1782438949423153152 |
---|---|
author | Ekici, Naime Esmerligil, Zerrin Ersalan, Dilek |
author_facet | Ekici, Naime Esmerligil, Zerrin Ersalan, Dilek |
author_sort | Ekici, Naime |
collection | PubMed |
description | Let F be a free Lie algebra of finite rank over a field K. We prove that if an ideal [Formula: see text] of the algebra [Formula: see text] contains a primitive element [Formula: see text] then the element [Formula: see text] is primitive. We also show that, in the Lie algebra [Formula: see text] there exists an element [Formula: see text] such that the ideal [Formula: see text] contains a primitive element [Formula: see text] but, [Formula: see text] and [Formula: see text] are not conjugate by means of an inner automorphism. |
format | Online Article Text |
id | pubmed-4917519 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-49175192016-07-06 Ideals and primitive elements of some relatively free Lie algebras Ekici, Naime Esmerligil, Zerrin Ersalan, Dilek Springerplus Research Let F be a free Lie algebra of finite rank over a field K. We prove that if an ideal [Formula: see text] of the algebra [Formula: see text] contains a primitive element [Formula: see text] then the element [Formula: see text] is primitive. We also show that, in the Lie algebra [Formula: see text] there exists an element [Formula: see text] such that the ideal [Formula: see text] contains a primitive element [Formula: see text] but, [Formula: see text] and [Formula: see text] are not conjugate by means of an inner automorphism. Springer International Publishing 2016-06-22 /pmc/articles/PMC4917519/ /pubmed/27386282 http://dx.doi.org/10.1186/s40064-016-2545-2 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Ekici, Naime Esmerligil, Zerrin Ersalan, Dilek Ideals and primitive elements of some relatively free Lie algebras |
title | Ideals and primitive elements of some relatively free Lie algebras |
title_full | Ideals and primitive elements of some relatively free Lie algebras |
title_fullStr | Ideals and primitive elements of some relatively free Lie algebras |
title_full_unstemmed | Ideals and primitive elements of some relatively free Lie algebras |
title_short | Ideals and primitive elements of some relatively free Lie algebras |
title_sort | ideals and primitive elements of some relatively free lie algebras |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917519/ https://www.ncbi.nlm.nih.gov/pubmed/27386282 http://dx.doi.org/10.1186/s40064-016-2545-2 |
work_keys_str_mv | AT ekicinaime idealsandprimitiveelementsofsomerelativelyfreeliealgebras AT esmerligilzerrin idealsandprimitiveelementsofsomerelativelyfreeliealgebras AT ersalandilek idealsandprimitiveelementsofsomerelativelyfreeliealgebras |