Cargando…
Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation123
Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recentl...
Autores principales: | Plaksin, Michael, Kimmel, Eitan, Shoham, Shy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917736/ https://www.ncbi.nlm.nih.gov/pubmed/27390775 http://dx.doi.org/10.1523/ENEURO.0136-15.2016 |
Ejemplares similares
-
Correspondence: Revisiting the theoretical cell membrane thermal capacitance response
por: Plaksin, Michael, et al.
Publicado: (2017) -
MorphoSONIC: A morphologically structured intramembrane cavitation model reveals fiber-specific neuromodulation by ultrasound
por: Lemaire, Théo, et al.
Publicado: (2021) -
Realistic Numerical and Analytical Modeling of Light Scattering in Brain Tissue for Optogenetic Applications123
por: Yona, Guy, et al.
Publicado: (2016) -
Voltage Dependence of a Neuromodulator-Activated Ionic Current123
por: Gray, Michael, et al.
Publicado: (2016) -
Treatment of rhodamine B with cavitation technology: comparison of hydrodynamic cavitation with ultrasonic cavitation
por: Ye, Yu-Fang, et al.
Publicado: (2021)