Cargando…
Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation()
Rectal tumour segmentation in dynamic contrast-enhanced MRI (DCE-MRI) is a challenging task, and an automated and consistent method would be highly desirable to improve the modelling and prediction of patient outcomes from tissue contrast enhancement characteristics – particularly in routine clinica...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917895/ https://www.ncbi.nlm.nih.gov/pubmed/27054278 http://dx.doi.org/10.1016/j.media.2016.03.002 |
_version_ | 1782439016534114304 |
---|---|
author | Irving, Benjamin Franklin, James M. Papież, Bartłomiej W. Anderson, Ewan M. Sharma, Ricky A. Gleeson, Fergus V. Brady, Sir Michael Schnabel, Julia A. |
author_facet | Irving, Benjamin Franklin, James M. Papież, Bartłomiej W. Anderson, Ewan M. Sharma, Ricky A. Gleeson, Fergus V. Brady, Sir Michael Schnabel, Julia A. |
author_sort | Irving, Benjamin |
collection | PubMed |
description | Rectal tumour segmentation in dynamic contrast-enhanced MRI (DCE-MRI) is a challenging task, and an automated and consistent method would be highly desirable to improve the modelling and prediction of patient outcomes from tissue contrast enhancement characteristics – particularly in routine clinical practice. A framework is developed to automate DCE-MRI tumour segmentation, by introducing: perfusion-supervoxels to over-segment and classify DCE-MRI volumes using the dynamic contrast enhancement characteristics; and the pieces-of-parts graphical model, which adds global (anatomic) constraints that further refine the supervoxel components that comprise the tumour. The framework was evaluated on 23 DCE-MRI scans of patients with rectal adenocarcinomas, and achieved a voxelwise area-under the receiver operating characteristic curve (AUC) of 0.97 compared to expert delineations. Creating a binary tumour segmentation, 21 of the 23 cases were segmented correctly with a median Dice similarity coefficient (DSC) of 0.63, which is close to the inter-rater variability of this challenging task. A second study is also included to demonstrate the method’s generalisability and achieved a DSC of 0.71. The framework achieves promising results for the underexplored area of rectal tumour segmentation in DCE-MRI, and the methods have potential to be applied to other DCE-MRI and supervoxel segmentation problems. |
format | Online Article Text |
id | pubmed-4917895 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-49178952016-08-01 Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation() Irving, Benjamin Franklin, James M. Papież, Bartłomiej W. Anderson, Ewan M. Sharma, Ricky A. Gleeson, Fergus V. Brady, Sir Michael Schnabel, Julia A. Med Image Anal Article Rectal tumour segmentation in dynamic contrast-enhanced MRI (DCE-MRI) is a challenging task, and an automated and consistent method would be highly desirable to improve the modelling and prediction of patient outcomes from tissue contrast enhancement characteristics – particularly in routine clinical practice. A framework is developed to automate DCE-MRI tumour segmentation, by introducing: perfusion-supervoxels to over-segment and classify DCE-MRI volumes using the dynamic contrast enhancement characteristics; and the pieces-of-parts graphical model, which adds global (anatomic) constraints that further refine the supervoxel components that comprise the tumour. The framework was evaluated on 23 DCE-MRI scans of patients with rectal adenocarcinomas, and achieved a voxelwise area-under the receiver operating characteristic curve (AUC) of 0.97 compared to expert delineations. Creating a binary tumour segmentation, 21 of the 23 cases were segmented correctly with a median Dice similarity coefficient (DSC) of 0.63, which is close to the inter-rater variability of this challenging task. A second study is also included to demonstrate the method’s generalisability and achieved a DSC of 0.71. The framework achieves promising results for the underexplored area of rectal tumour segmentation in DCE-MRI, and the methods have potential to be applied to other DCE-MRI and supervoxel segmentation problems. Elsevier 2016-08 /pmc/articles/PMC4917895/ /pubmed/27054278 http://dx.doi.org/10.1016/j.media.2016.03.002 Text en © 2016 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Irving, Benjamin Franklin, James M. Papież, Bartłomiej W. Anderson, Ewan M. Sharma, Ricky A. Gleeson, Fergus V. Brady, Sir Michael Schnabel, Julia A. Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation() |
title | Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation() |
title_full | Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation() |
title_fullStr | Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation() |
title_full_unstemmed | Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation() |
title_short | Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation() |
title_sort | pieces-of-parts for supervoxel segmentation with global context: application to dce-mri tumour delineation() |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917895/ https://www.ncbi.nlm.nih.gov/pubmed/27054278 http://dx.doi.org/10.1016/j.media.2016.03.002 |
work_keys_str_mv | AT irvingbenjamin piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation AT franklinjamesm piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation AT papiezbartłomiejw piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation AT andersonewanm piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation AT sharmarickya piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation AT gleesonfergusv piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation AT bradysirmichael piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation AT schnabeljuliaa piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation |