Cargando…

Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation()

Rectal tumour segmentation in dynamic contrast-enhanced MRI (DCE-MRI) is a challenging task, and an automated and consistent method would be highly desirable to improve the modelling and prediction of patient outcomes from tissue contrast enhancement characteristics – particularly in routine clinica...

Descripción completa

Detalles Bibliográficos
Autores principales: Irving, Benjamin, Franklin, James M., Papież, Bartłomiej W., Anderson, Ewan M., Sharma, Ricky A., Gleeson, Fergus V., Brady, Sir Michael, Schnabel, Julia A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917895/
https://www.ncbi.nlm.nih.gov/pubmed/27054278
http://dx.doi.org/10.1016/j.media.2016.03.002
_version_ 1782439016534114304
author Irving, Benjamin
Franklin, James M.
Papież, Bartłomiej W.
Anderson, Ewan M.
Sharma, Ricky A.
Gleeson, Fergus V.
Brady, Sir Michael
Schnabel, Julia A.
author_facet Irving, Benjamin
Franklin, James M.
Papież, Bartłomiej W.
Anderson, Ewan M.
Sharma, Ricky A.
Gleeson, Fergus V.
Brady, Sir Michael
Schnabel, Julia A.
author_sort Irving, Benjamin
collection PubMed
description Rectal tumour segmentation in dynamic contrast-enhanced MRI (DCE-MRI) is a challenging task, and an automated and consistent method would be highly desirable to improve the modelling and prediction of patient outcomes from tissue contrast enhancement characteristics – particularly in routine clinical practice. A framework is developed to automate DCE-MRI tumour segmentation, by introducing: perfusion-supervoxels to over-segment and classify DCE-MRI volumes using the dynamic contrast enhancement characteristics; and the pieces-of-parts graphical model, which adds global (anatomic) constraints that further refine the supervoxel components that comprise the tumour. The framework was evaluated on 23 DCE-MRI scans of patients with rectal adenocarcinomas, and achieved a voxelwise area-under the receiver operating characteristic curve (AUC) of 0.97 compared to expert delineations. Creating a binary tumour segmentation, 21 of the 23 cases were segmented correctly with a median Dice similarity coefficient (DSC) of 0.63, which is close to the inter-rater variability of this challenging task. A second study is also included to demonstrate the method’s generalisability and achieved a DSC of 0.71. The framework achieves promising results for the underexplored area of rectal tumour segmentation in DCE-MRI, and the methods have potential to be applied to other DCE-MRI and supervoxel segmentation problems.
format Online
Article
Text
id pubmed-4917895
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-49178952016-08-01 Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation() Irving, Benjamin Franklin, James M. Papież, Bartłomiej W. Anderson, Ewan M. Sharma, Ricky A. Gleeson, Fergus V. Brady, Sir Michael Schnabel, Julia A. Med Image Anal Article Rectal tumour segmentation in dynamic contrast-enhanced MRI (DCE-MRI) is a challenging task, and an automated and consistent method would be highly desirable to improve the modelling and prediction of patient outcomes from tissue contrast enhancement characteristics – particularly in routine clinical practice. A framework is developed to automate DCE-MRI tumour segmentation, by introducing: perfusion-supervoxels to over-segment and classify DCE-MRI volumes using the dynamic contrast enhancement characteristics; and the pieces-of-parts graphical model, which adds global (anatomic) constraints that further refine the supervoxel components that comprise the tumour. The framework was evaluated on 23 DCE-MRI scans of patients with rectal adenocarcinomas, and achieved a voxelwise area-under the receiver operating characteristic curve (AUC) of 0.97 compared to expert delineations. Creating a binary tumour segmentation, 21 of the 23 cases were segmented correctly with a median Dice similarity coefficient (DSC) of 0.63, which is close to the inter-rater variability of this challenging task. A second study is also included to demonstrate the method’s generalisability and achieved a DSC of 0.71. The framework achieves promising results for the underexplored area of rectal tumour segmentation in DCE-MRI, and the methods have potential to be applied to other DCE-MRI and supervoxel segmentation problems. Elsevier 2016-08 /pmc/articles/PMC4917895/ /pubmed/27054278 http://dx.doi.org/10.1016/j.media.2016.03.002 Text en © 2016 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Irving, Benjamin
Franklin, James M.
Papież, Bartłomiej W.
Anderson, Ewan M.
Sharma, Ricky A.
Gleeson, Fergus V.
Brady, Sir Michael
Schnabel, Julia A.
Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation()
title Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation()
title_full Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation()
title_fullStr Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation()
title_full_unstemmed Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation()
title_short Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation()
title_sort pieces-of-parts for supervoxel segmentation with global context: application to dce-mri tumour delineation()
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917895/
https://www.ncbi.nlm.nih.gov/pubmed/27054278
http://dx.doi.org/10.1016/j.media.2016.03.002
work_keys_str_mv AT irvingbenjamin piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation
AT franklinjamesm piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation
AT papiezbartłomiejw piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation
AT andersonewanm piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation
AT sharmarickya piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation
AT gleesonfergusv piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation
AT bradysirmichael piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation
AT schnabeljuliaa piecesofpartsforsupervoxelsegmentationwithglobalcontextapplicationtodcemritumourdelineation