Cargando…

Simple surface functionalization of polymersomes using non-antibacterial peptide anchors

BACKGROUND: Hollow vesicles formed from block copolymers, so-called polymersomes, have been extensively studied in the last decade for their various applications in drug delivery, in diagnostics and as nanoreactors. The immobilization of proteins on the polymersomes’ surface can aid in cell targetin...

Descripción completa

Detalles Bibliográficos
Autores principales: Klermund, Ludwig, Poschenrieder, Sarah T., Castiglione, Kathrin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918069/
https://www.ncbi.nlm.nih.gov/pubmed/27334900
http://dx.doi.org/10.1186/s12951-016-0205-x
Descripción
Sumario:BACKGROUND: Hollow vesicles formed from block copolymers, so-called polymersomes, have been extensively studied in the last decade for their various applications in drug delivery, in diagnostics and as nanoreactors. The immobilization of proteins on the polymersomes’ surface can aid in cell targeting, lead to functional biosensors or add an additional reaction space for multistep syntheses. In almost all surface functionalization strategies to date, a chemical pre-conjugation of the polymer with a reactive group or ligand and the functionalization of the protein are required. To avoid chemical pre-conjugation, we investigated the simple and quick functionalization of preformed poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline) (PMOXA-PDMS-PMOXA) polymersomes through the spontaneous insertion of four hydrophobic, non-antibacterial peptide anchors into the membrane to display enhanced green fluorescent protein (eGFP) on the polymersomes’ surface. RESULTS: Three of the four hydrophobic peptides, the transmembrane domains of a eukaryotic cytochrome b(5), of the viral lysis protein L and of the yeast syntaxin VAM3 could be recombinantly expressed as soluble eGFP-fusion proteins and spontaneously inserted into the polymeric membrane. Characterization of the surface functionalization revealed that peptide insertion was linearly dependent on the protein concentration and possible at a broad temperature range of 4–42 °C. Up to 2320 ± 280 eGFP molecules were immobilized on a single polymersome, which is in agreement with the calculated maximum loading capacity. The peptide insertion was stable without disrupting membrane integrity as shown in calcein leakage experiments and the functionalized polymersomes remained stable for at least 6 weeks. CONCLUSION: The surface functionalization of polymersomes with hydrophilic proteins can be mediated by several peptide anchors in a spontaneous process at extremely mild insertion conditions and without the need of pre-conjugating polymers. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12951-016-0205-x) contains supplementary material, which is available to authorized users.