Cargando…
Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia
In the present study, gene expression profiles of acute myeloid leukemia (AML) samples were analyzed to identify feature genes with the capacity to predict the mutation status of FLT3/ITD. Two machine learning models, namely the support vector machine (SVM) and random forest (RF) methods, were used...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918602/ https://www.ncbi.nlm.nih.gov/pubmed/27177049 http://dx.doi.org/10.3892/mmr.2016.5260 |
_version_ | 1782439136679952384 |
---|---|
author | LI, CHENGLONG ZHU, BIAO CHEN, JIAO HUANG, XIAOBING |
author_facet | LI, CHENGLONG ZHU, BIAO CHEN, JIAO HUANG, XIAOBING |
author_sort | LI, CHENGLONG |
collection | PubMed |
description | In the present study, gene expression profiles of acute myeloid leukemia (AML) samples were analyzed to identify feature genes with the capacity to predict the mutation status of FLT3/ITD. Two machine learning models, namely the support vector machine (SVM) and random forest (RF) methods, were used for classification. Four datasets were downloaded from the European Bioinformatics Institute, two of which (containing 371 samples, including 281 FLT3/ITD mutation-negative and 90 mutation-positive samples) were randomly defined as the training group, while the other two datasets (containing 488 samples, including 350 FLT3/ITD mutation-negative and 138 mutation-positive samples) were defined as the test group. Differentially expressed genes (DEGs) were identified by significance analysis of the micro-array data by using the training samples. The classification efficiency of the SCM and RF methods was evaluated using the following parameters: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the area under the receiver operating characteristic curve. Functional enrichment analysis was performed for the feature genes with DAVID. A total of 585 DEGs were identified in the training group, of which 580 were upregulated and five were downregulated. The classification accuracy rates of the two methods for the training group, the test group and the combined group using the 585 feature genes were >90%. For the SVM and RF methods, the rates of correct determination, specificity and PPV were >90%, while the sensitivity and NPV were >80%. The SVM method produced a slightly better classification effect than the RF method. A total of 13 biological pathways were overrepresented by the feature genes, mainly involving energy metabolism, chromatin organization and translation. The feature genes identified in the present study may be used to predict the mutation status of FLT3/ITD in patients with AML. |
format | Online Article Text |
id | pubmed-4918602 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-49186022016-07-11 Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia LI, CHENGLONG ZHU, BIAO CHEN, JIAO HUANG, XIAOBING Mol Med Rep Articles In the present study, gene expression profiles of acute myeloid leukemia (AML) samples were analyzed to identify feature genes with the capacity to predict the mutation status of FLT3/ITD. Two machine learning models, namely the support vector machine (SVM) and random forest (RF) methods, were used for classification. Four datasets were downloaded from the European Bioinformatics Institute, two of which (containing 371 samples, including 281 FLT3/ITD mutation-negative and 90 mutation-positive samples) were randomly defined as the training group, while the other two datasets (containing 488 samples, including 350 FLT3/ITD mutation-negative and 138 mutation-positive samples) were defined as the test group. Differentially expressed genes (DEGs) were identified by significance analysis of the micro-array data by using the training samples. The classification efficiency of the SCM and RF methods was evaluated using the following parameters: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the area under the receiver operating characteristic curve. Functional enrichment analysis was performed for the feature genes with DAVID. A total of 585 DEGs were identified in the training group, of which 580 were upregulated and five were downregulated. The classification accuracy rates of the two methods for the training group, the test group and the combined group using the 585 feature genes were >90%. For the SVM and RF methods, the rates of correct determination, specificity and PPV were >90%, while the sensitivity and NPV were >80%. The SVM method produced a slightly better classification effect than the RF method. A total of 13 biological pathways were overrepresented by the feature genes, mainly involving energy metabolism, chromatin organization and translation. The feature genes identified in the present study may be used to predict the mutation status of FLT3/ITD in patients with AML. D.A. Spandidos 2016-07 2016-05-12 /pmc/articles/PMC4918602/ /pubmed/27177049 http://dx.doi.org/10.3892/mmr.2016.5260 Text en Copyright: © Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles LI, CHENGLONG ZHU, BIAO CHEN, JIAO HUANG, XIAOBING Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia |
title | Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia |
title_full | Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia |
title_fullStr | Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia |
title_full_unstemmed | Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia |
title_short | Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia |
title_sort | feature genes predicting the flt3/itd mutation in acute myeloid leukemia |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918602/ https://www.ncbi.nlm.nih.gov/pubmed/27177049 http://dx.doi.org/10.3892/mmr.2016.5260 |
work_keys_str_mv | AT lichenglong featuregenespredictingtheflt3itdmutationinacutemyeloidleukemia AT zhubiao featuregenespredictingtheflt3itdmutationinacutemyeloidleukemia AT chenjiao featuregenespredictingtheflt3itdmutationinacutemyeloidleukemia AT huangxiaobing featuregenespredictingtheflt3itdmutationinacutemyeloidleukemia |