Cargando…

Screening and identification of the differentially expressed proteins in neonatal rat kidney after partial unilateral ureteral obstruction

Renal fibrosis, considered to be a common consequence of progressive renal disease, involves glomerulosclerosis and/or tubulointerstitial fibrosis. Currently, research is focused on investigating potential mechanisms to prevent or reverse the damage caused by fibrosis. Under the influence of cytokin...

Descripción completa

Detalles Bibliográficos
Autores principales: ZHAO, QI, XUE, YANSHENG, YANG, YI, NIU, ZHIBIN, WANG, CHANGLIN, HOU, YING, CHEN, HUI
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918607/
https://www.ncbi.nlm.nih.gov/pubmed/27222353
http://dx.doi.org/10.3892/mmr.2016.5338
Descripción
Sumario:Renal fibrosis, considered to be a common consequence of progressive renal disease, involves glomerulosclerosis and/or tubulointerstitial fibrosis. Currently, research is focused on investigating potential mechanisms to prevent or reverse the damage caused by fibrosis. Under the influence of cytokines, chemokines and other signaling molecules, the cellular interactions that regulate the development of interstitial fibrosis are complex. Epithelial-mesenchymal transition (EMT) has emerged as an important pathway leading to the generation of matrix-producing fibroblasts and myofibroblasts in diseased kidneys. The proteomics study compared the protein profiles between the time points of podocyte EMT and tubular cell EMT in a partial unilateral ureteral obstruction (PUUO) model in rats. Proteins isolated from the PUUO group and corresponding sham rat kidney tissues were subjected to 2-D gel electrophoresis and were then identified by mass spectrometry. In total, 43 proteins with differential expression were identified, which were reported to be involved in the regulation of the cytoskeleton and actin, glucose metabolism, cell apoptosis, mitochondrial energy metabolism, oxidative stress and endoplasmic reticulum stress. Electron transfer flavoprotein, β polypeptide was detected by immunoblot analysis and its mRNA levels were determined in renal tissues. The results demonstrate protein alterations that reflect the pathology of the obstructed kidneys, and thus may aid in understanding the pathogenesis of obstructive nephropathy.