Cargando…
The Effect of Ignoring Statistical Interactions in Regression Analyses Conducted in Epidemiologic Studies: An Example with Survival Analysis Using Cox Proportional Hazards Regression Model
OBJECTIVE: To demonstrate the adverse impact of ignoring statistical interactions in regression models used in epidemiologic studies. STUDY DESIGN AND SETTING: Based on different scenarios that involved known values for coefficient of the interaction term in Cox regression models we generated 1000 s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918637/ https://www.ncbi.nlm.nih.gov/pubmed/27347436 http://dx.doi.org/10.4172/2161-1165.1000216 |
_version_ | 1782439142702972928 |
---|---|
author | Vatcheva, KP Lee, M McCormick, JB Rahbar, MH |
author_facet | Vatcheva, KP Lee, M McCormick, JB Rahbar, MH |
author_sort | Vatcheva, KP |
collection | PubMed |
description | OBJECTIVE: To demonstrate the adverse impact of ignoring statistical interactions in regression models used in epidemiologic studies. STUDY DESIGN AND SETTING: Based on different scenarios that involved known values for coefficient of the interaction term in Cox regression models we generated 1000 samples of size 600 each. The simulated samples and a real life data set from the Cameron County Hispanic Cohort were used to evaluate the effect of ignoring statistical interactions in these models. RESULTS: Compared to correctly specified Cox regression models with interaction terms, misspecified models without interaction terms resulted in up to 8.95 fold bias in estimated regression coefficients. Whereas when data were generated from a perfect additive Cox proportional hazards regression model the inclusion of the interaction between the two covariates resulted in only 2% estimated bias in main effect regression coefficients estimates, but did not alter the main findings of no significant interactions. CONCLUSIONS: When the effects are synergic, the failure to account for an interaction effect could lead to bias and misinterpretation of the results, and in some instances to incorrect policy decisions. Best practices in regression analysis must include identification of interactions, including for analysis of data from epidemiologic studies. |
format | Online Article Text |
id | pubmed-4918637 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
record_format | MEDLINE/PubMed |
spelling | pubmed-49186372016-06-23 The Effect of Ignoring Statistical Interactions in Regression Analyses Conducted in Epidemiologic Studies: An Example with Survival Analysis Using Cox Proportional Hazards Regression Model Vatcheva, KP Lee, M McCormick, JB Rahbar, MH Epidemiology (Sunnyvale) Article OBJECTIVE: To demonstrate the adverse impact of ignoring statistical interactions in regression models used in epidemiologic studies. STUDY DESIGN AND SETTING: Based on different scenarios that involved known values for coefficient of the interaction term in Cox regression models we generated 1000 samples of size 600 each. The simulated samples and a real life data set from the Cameron County Hispanic Cohort were used to evaluate the effect of ignoring statistical interactions in these models. RESULTS: Compared to correctly specified Cox regression models with interaction terms, misspecified models without interaction terms resulted in up to 8.95 fold bias in estimated regression coefficients. Whereas when data were generated from a perfect additive Cox proportional hazards regression model the inclusion of the interaction between the two covariates resulted in only 2% estimated bias in main effect regression coefficients estimates, but did not alter the main findings of no significant interactions. CONCLUSIONS: When the effects are synergic, the failure to account for an interaction effect could lead to bias and misinterpretation of the results, and in some instances to incorrect policy decisions. Best practices in regression analysis must include identification of interactions, including for analysis of data from epidemiologic studies. 2015-01-15 2015-02 /pmc/articles/PMC4918637/ /pubmed/27347436 http://dx.doi.org/10.4172/2161-1165.1000216 Text en http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Article Vatcheva, KP Lee, M McCormick, JB Rahbar, MH The Effect of Ignoring Statistical Interactions in Regression Analyses Conducted in Epidemiologic Studies: An Example with Survival Analysis Using Cox Proportional Hazards Regression Model |
title | The Effect of Ignoring Statistical Interactions in Regression Analyses Conducted in Epidemiologic Studies: An Example with Survival Analysis Using Cox Proportional Hazards Regression Model |
title_full | The Effect of Ignoring Statistical Interactions in Regression Analyses Conducted in Epidemiologic Studies: An Example with Survival Analysis Using Cox Proportional Hazards Regression Model |
title_fullStr | The Effect of Ignoring Statistical Interactions in Regression Analyses Conducted in Epidemiologic Studies: An Example with Survival Analysis Using Cox Proportional Hazards Regression Model |
title_full_unstemmed | The Effect of Ignoring Statistical Interactions in Regression Analyses Conducted in Epidemiologic Studies: An Example with Survival Analysis Using Cox Proportional Hazards Regression Model |
title_short | The Effect of Ignoring Statistical Interactions in Regression Analyses Conducted in Epidemiologic Studies: An Example with Survival Analysis Using Cox Proportional Hazards Regression Model |
title_sort | effect of ignoring statistical interactions in regression analyses conducted in epidemiologic studies: an example with survival analysis using cox proportional hazards regression model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918637/ https://www.ncbi.nlm.nih.gov/pubmed/27347436 http://dx.doi.org/10.4172/2161-1165.1000216 |
work_keys_str_mv | AT vatchevakp theeffectofignoringstatisticalinteractionsinregressionanalysesconductedinepidemiologicstudiesanexamplewithsurvivalanalysisusingcoxproportionalhazardsregressionmodel AT leem theeffectofignoringstatisticalinteractionsinregressionanalysesconductedinepidemiologicstudiesanexamplewithsurvivalanalysisusingcoxproportionalhazardsregressionmodel AT mccormickjb theeffectofignoringstatisticalinteractionsinregressionanalysesconductedinepidemiologicstudiesanexamplewithsurvivalanalysisusingcoxproportionalhazardsregressionmodel AT rahbarmh theeffectofignoringstatisticalinteractionsinregressionanalysesconductedinepidemiologicstudiesanexamplewithsurvivalanalysisusingcoxproportionalhazardsregressionmodel AT vatchevakp effectofignoringstatisticalinteractionsinregressionanalysesconductedinepidemiologicstudiesanexamplewithsurvivalanalysisusingcoxproportionalhazardsregressionmodel AT leem effectofignoringstatisticalinteractionsinregressionanalysesconductedinepidemiologicstudiesanexamplewithsurvivalanalysisusingcoxproportionalhazardsregressionmodel AT mccormickjb effectofignoringstatisticalinteractionsinregressionanalysesconductedinepidemiologicstudiesanexamplewithsurvivalanalysisusingcoxproportionalhazardsregressionmodel AT rahbarmh effectofignoringstatisticalinteractionsinregressionanalysesconductedinepidemiologicstudiesanexamplewithsurvivalanalysisusingcoxproportionalhazardsregressionmodel |