Cargando…
Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity
ADARs (adenosine deaminases acting on RNA) are editing enzymes that convert adenosine (A) to inosine (I) in duplex RNA, a modification reaction with wide-ranging consequences on RNA function. Our understanding of the ADAR reaction mechanism, origin of editing site selectivity and effect of mutations...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918759/ https://www.ncbi.nlm.nih.gov/pubmed/27065196 http://dx.doi.org/10.1038/nsmb.3203 |
Sumario: | ADARs (adenosine deaminases acting on RNA) are editing enzymes that convert adenosine (A) to inosine (I) in duplex RNA, a modification reaction with wide-ranging consequences on RNA function. Our understanding of the ADAR reaction mechanism, origin of editing site selectivity and effect of mutations is limited by the lack of high-resolution structural data for complexes of ADARs bound to substrate RNAs. Here we describe four crystal structures of the deaminase domain of human ADAR2 bound to RNA duplexes bearing a mimic of the deamination reaction intermediate. These structures, together with structure-guided mutagenesis and RNA-modification experiments, explain the basis for ADAR deaminase domain’s dsRNA specificity, its base-flipping mechanism, and nearest neighbor preferences. In addition, an ADAR2-specific RNA-binding loop was identified near the enzyme active site rationalizing differences in selectivity observed between different ADARs. Finally, our results provide a structural framework for understanding the effects of ADAR mutations associated with human disease. |
---|