Cargando…
Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale
The rapidly expanding body of available genomic and protein structural data provides a rich resource for understanding protein dynamics with biomolecular simulation. While computational infrastructure has grown rapidly, simulations on an omics scale are not yet widespread, primarily because software...
Autores principales: | Parton, Daniel L., Grinaway, Patrick B., Hanson, Sonya M., Beauchamp, Kyle A., Chodera, John D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918922/ https://www.ncbi.nlm.nih.gov/pubmed/27337644 http://dx.doi.org/10.1371/journal.pcbi.1004728 |
Ejemplares similares
-
Quantifying Configuration-Sampling Error in Langevin Simulations of Complex Molecular Systems
por: Fass, Josh, et al.
Publicado: (2018) -
A high-throughput, multiplexed assay for superfamily-wide profiling of enzyme activity
por: Bachovchin, Daniel A., et al.
Publicado: (2014) -
OpenPathSampling: A Python Framework for Path Sampling
Simulations. 2. Building and Customizing Path Ensembles and Sample
Schemes
por: Swenson, David W. H., et al.
Publicado: (2018) -
ensemblQueryR: fast, flexible and high-throughput querying of Ensembl LD API endpoints in R
por: Fairbrother-Browne, Aine, et al.
Publicado: (2023) -
Machine learning enables long time scale molecular photodynamics simulations
por: Westermayr, Julia, et al.
Publicado: (2019)