Cargando…

Dynamic Organization of SecA and SecY Secretion Complexes in the B. subtilis Membrane

In prokaryotes, about one third of cellular proteins are translocated across the plasma membrane or inserted into it by concerted action of the cytoplasmic ATPase SecA and the universally conserved SecYEG heterotrimeric polypeptide-translocating pore. Secretion complexes have been reported to locali...

Descripción completa

Detalles Bibliográficos
Autores principales: Dajkovic, Alex, Hinde, Elizabeth, MacKichan, Calum, Carballido-Lopez, Rut
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918944/
https://www.ncbi.nlm.nih.gov/pubmed/27336478
http://dx.doi.org/10.1371/journal.pone.0157899
Descripción
Sumario:In prokaryotes, about one third of cellular proteins are translocated across the plasma membrane or inserted into it by concerted action of the cytoplasmic ATPase SecA and the universally conserved SecYEG heterotrimeric polypeptide-translocating pore. Secretion complexes have been reported to localize in specific subcellular sites in Bacillus subtilis. In this work, we used a combination of total internal reflection microscopy, scanning fluorescence correlation spectroscopy, and pair correlation function to study the localization and dynamics of SecA and SecY in growing Bacillus subtilis cells. Both SecA and SecY localized in transient and dynamic foci in the cytoplasmic membrane, which displayed no higher-level organization in helices. Foci of SecA and SecY were in constant flux with freely diffusing SecA and SecY molecules. Scanning FCS confirmed the existence of populations of cellular SecA and SecY molecules with a wide range of diffusion coefficients. Diffusion of SecY as an uncomplexed molecular species was short-lived and only local while SecY complexed with its protein partners traversed distances of over half a micrometer in the cell.