Cargando…
Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs
The mitochondrion is the power plant of the eukaryotic cell, and tRNAs are the fundamental components of its translational machinery. In the present paper, the evolution of mitochondrial tRNAs was investigated in the Cetacea, a clade of Cetartiodactyla that retuned to water and thus had to adapt its...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919058/ https://www.ncbi.nlm.nih.gov/pubmed/27336480 http://dx.doi.org/10.1371/journal.pone.0158129 |
_version_ | 1782439202201272320 |
---|---|
author | Montelli, Stefano Peruffo, Antonella Patarnello, Tomaso Cozzi, Bruno Negrisolo, Enrico |
author_facet | Montelli, Stefano Peruffo, Antonella Patarnello, Tomaso Cozzi, Bruno Negrisolo, Enrico |
author_sort | Montelli, Stefano |
collection | PubMed |
description | The mitochondrion is the power plant of the eukaryotic cell, and tRNAs are the fundamental components of its translational machinery. In the present paper, the evolution of mitochondrial tRNAs was investigated in the Cetacea, a clade of Cetartiodactyla that retuned to water and thus had to adapt its metabolism to a different medium than that of its mainland ancestors. Our analysis focussed on identifying the factors that influenced the evolution of Cetacea tRNA double-helix elements, which play a pivotal role in the formation of the secondary and tertiary structures of each tRNA and consequently manipulate the whole translation machinery of the mitochondrion. Our analyses showed that the substitution pathways in the stems of different tRNAs were influenced by various factors, determining a molecular evolution that was unique to each of the 22 tRNAs. Our data suggested that the composition, AT-skew, and GC-skew of the tRNA stems were the main factors influencing the substitution process. In particular, the range of variation and the fluctuation of these parameters affected the fate of single tRNAs. Strong heterogeneity was observed among the different species of Cetacea. Finally, it appears that the evolution of mitochondrial tRNAs was also shaped by the environments in which the Cetacean taxa differentiated. This latter effect was particularly evident in toothed whales that either live in freshwater or are deep divers. |
format | Online Article Text |
id | pubmed-4919058 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49190582016-07-08 Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs Montelli, Stefano Peruffo, Antonella Patarnello, Tomaso Cozzi, Bruno Negrisolo, Enrico PLoS One Research Article The mitochondrion is the power plant of the eukaryotic cell, and tRNAs are the fundamental components of its translational machinery. In the present paper, the evolution of mitochondrial tRNAs was investigated in the Cetacea, a clade of Cetartiodactyla that retuned to water and thus had to adapt its metabolism to a different medium than that of its mainland ancestors. Our analysis focussed on identifying the factors that influenced the evolution of Cetacea tRNA double-helix elements, which play a pivotal role in the formation of the secondary and tertiary structures of each tRNA and consequently manipulate the whole translation machinery of the mitochondrion. Our analyses showed that the substitution pathways in the stems of different tRNAs were influenced by various factors, determining a molecular evolution that was unique to each of the 22 tRNAs. Our data suggested that the composition, AT-skew, and GC-skew of the tRNA stems were the main factors influencing the substitution process. In particular, the range of variation and the fluctuation of these parameters affected the fate of single tRNAs. Strong heterogeneity was observed among the different species of Cetacea. Finally, it appears that the evolution of mitochondrial tRNAs was also shaped by the environments in which the Cetacean taxa differentiated. This latter effect was particularly evident in toothed whales that either live in freshwater or are deep divers. Public Library of Science 2016-06-23 /pmc/articles/PMC4919058/ /pubmed/27336480 http://dx.doi.org/10.1371/journal.pone.0158129 Text en © 2016 Montelli et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Montelli, Stefano Peruffo, Antonella Patarnello, Tomaso Cozzi, Bruno Negrisolo, Enrico Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs |
title | Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs |
title_full | Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs |
title_fullStr | Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs |
title_full_unstemmed | Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs |
title_short | Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs |
title_sort | back to water: signature of adaptive evolution in cetacean mitochondrial trnas |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919058/ https://www.ncbi.nlm.nih.gov/pubmed/27336480 http://dx.doi.org/10.1371/journal.pone.0158129 |
work_keys_str_mv | AT montellistefano backtowatersignatureofadaptiveevolutionincetaceanmitochondrialtrnas AT peruffoantonella backtowatersignatureofadaptiveevolutionincetaceanmitochondrialtrnas AT patarnellotomaso backtowatersignatureofadaptiveevolutionincetaceanmitochondrialtrnas AT cozzibruno backtowatersignatureofadaptiveevolutionincetaceanmitochondrialtrnas AT negrisoloenrico backtowatersignatureofadaptiveevolutionincetaceanmitochondrialtrnas |