Cargando…
Dynamics of the functions [Formula: see text] with the real parameter
In this paper, the dynamics of the functions [Formula: see text] with the real parameter is studied. We say that a real parameter [Formula: see text] belongs to the set [Formula: see text] for a positive integer n if [Formula: see text] has an attracting cycle of n-order. We prove that the Fatou set...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919272/ https://www.ncbi.nlm.nih.gov/pubmed/27386299 http://dx.doi.org/10.1186/s40064-016-2411-2 |
Sumario: | In this paper, the dynamics of the functions [Formula: see text] with the real parameter is studied. We say that a real parameter [Formula: see text] belongs to the set [Formula: see text] for a positive integer n if [Formula: see text] has an attracting cycle of n-order. We prove that the Fatou set [Formula: see text] is a completely invariant attracting basin for every parameter [Formula: see text] . Further, regarding the set [Formula: see text] for [Formula: see text] , we prove the following results: (1) There exists [Formula: see text] such that [Formula: see text] . (2) For every positive integer [Formula: see text] , the set [Formula: see text] is non-empty. (3) For every prime number [Formula: see text] , the set [Formula: see text] has at least two components. |
---|