Cargando…
Bioresorbable Silicon Electronics for Transient Spatio-temporal Mapping of Electrical Activity from the Cerebral Cortex
Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include post-operative monitoring and transient physiologic recording after pe...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919903/ https://www.ncbi.nlm.nih.gov/pubmed/27088236 http://dx.doi.org/10.1038/nmat4624 |
_version_ | 1782439319029415936 |
---|---|
author | Yu, Ki Jun Kuzum, Duygu Hwang, Suk-Won Kim, Bong Hoon Juul, Halvor Kim, Nam Heon Won, Sang Min Chiang, Ken Trumpis, Michael Richardson, Andrew G. Cheng, Huanyu Fang, Hui Thomson, Marissa Bink, Hank Talos, Delia Seo, Kyung Jin Lee, Hee Nam Kang, Seung-Kyun Kim, Jae-Hwan Lee, Jung Yup Huang, Younggang Jensen, Frances E. Dichter, Marc A. Lucas, Timothy H. Viventi, Jonathan Litt, Brian Rogers, John A. |
author_facet | Yu, Ki Jun Kuzum, Duygu Hwang, Suk-Won Kim, Bong Hoon Juul, Halvor Kim, Nam Heon Won, Sang Min Chiang, Ken Trumpis, Michael Richardson, Andrew G. Cheng, Huanyu Fang, Hui Thomson, Marissa Bink, Hank Talos, Delia Seo, Kyung Jin Lee, Hee Nam Kang, Seung-Kyun Kim, Jae-Hwan Lee, Jung Yup Huang, Younggang Jensen, Frances E. Dichter, Marc A. Lucas, Timothy H. Viventi, Jonathan Litt, Brian Rogers, John A. |
author_sort | Yu, Ki Jun |
collection | PubMed |
description | Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include post-operative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, that record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required. |
format | Online Article Text |
id | pubmed-4919903 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
record_format | MEDLINE/PubMed |
spelling | pubmed-49199032016-10-18 Bioresorbable Silicon Electronics for Transient Spatio-temporal Mapping of Electrical Activity from the Cerebral Cortex Yu, Ki Jun Kuzum, Duygu Hwang, Suk-Won Kim, Bong Hoon Juul, Halvor Kim, Nam Heon Won, Sang Min Chiang, Ken Trumpis, Michael Richardson, Andrew G. Cheng, Huanyu Fang, Hui Thomson, Marissa Bink, Hank Talos, Delia Seo, Kyung Jin Lee, Hee Nam Kang, Seung-Kyun Kim, Jae-Hwan Lee, Jung Yup Huang, Younggang Jensen, Frances E. Dichter, Marc A. Lucas, Timothy H. Viventi, Jonathan Litt, Brian Rogers, John A. Nat Mater Article Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include post-operative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, that record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required. 2016-04-18 2016-07 /pmc/articles/PMC4919903/ /pubmed/27088236 http://dx.doi.org/10.1038/nmat4624 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Yu, Ki Jun Kuzum, Duygu Hwang, Suk-Won Kim, Bong Hoon Juul, Halvor Kim, Nam Heon Won, Sang Min Chiang, Ken Trumpis, Michael Richardson, Andrew G. Cheng, Huanyu Fang, Hui Thomson, Marissa Bink, Hank Talos, Delia Seo, Kyung Jin Lee, Hee Nam Kang, Seung-Kyun Kim, Jae-Hwan Lee, Jung Yup Huang, Younggang Jensen, Frances E. Dichter, Marc A. Lucas, Timothy H. Viventi, Jonathan Litt, Brian Rogers, John A. Bioresorbable Silicon Electronics for Transient Spatio-temporal Mapping of Electrical Activity from the Cerebral Cortex |
title | Bioresorbable Silicon Electronics for Transient Spatio-temporal Mapping of Electrical Activity from the Cerebral Cortex |
title_full | Bioresorbable Silicon Electronics for Transient Spatio-temporal Mapping of Electrical Activity from the Cerebral Cortex |
title_fullStr | Bioresorbable Silicon Electronics for Transient Spatio-temporal Mapping of Electrical Activity from the Cerebral Cortex |
title_full_unstemmed | Bioresorbable Silicon Electronics for Transient Spatio-temporal Mapping of Electrical Activity from the Cerebral Cortex |
title_short | Bioresorbable Silicon Electronics for Transient Spatio-temporal Mapping of Electrical Activity from the Cerebral Cortex |
title_sort | bioresorbable silicon electronics for transient spatio-temporal mapping of electrical activity from the cerebral cortex |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919903/ https://www.ncbi.nlm.nih.gov/pubmed/27088236 http://dx.doi.org/10.1038/nmat4624 |
work_keys_str_mv | AT yukijun bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT kuzumduygu bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT hwangsukwon bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT kimbonghoon bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT juulhalvor bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT kimnamheon bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT wonsangmin bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT chiangken bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT trumpismichael bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT richardsonandrewg bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT chenghuanyu bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT fanghui bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT thomsonmarissa bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT binkhank bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT talosdelia bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT seokyungjin bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT leeheenam bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT kangseungkyun bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT kimjaehwan bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT leejungyup bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT huangyounggang bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT jensenfrancese bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT dichtermarca bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT lucastimothyh bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT viventijonathan bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT littbrian bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex AT rogersjohna bioresorbablesiliconelectronicsfortransientspatiotemporalmappingofelectricalactivityfromthecerebralcortex |