Cargando…

Noninvasive Measurements of Glycogen in Perfused Mouse Livers Using Chemical Exchange Saturation Transfer NMR and Comparison to (13)C NMR Spectroscopy

[Image: see text] Liver glycogen represents an important physiological form of energy storage. It plays a key role in the regulation of blood glucose concentrations, and dysregulations in hepatic glycogen metabolism are linked to many diseases including diabetes and insulin resistance. In this work,...

Descripción completa

Detalles Bibliográficos
Autores principales: Miller, Corin O., Cao, Jin, Chekmenev, Eduard Y., Damon, Bruce M., Cherrington, Alan D., Gore, John C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2015
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920106/
https://www.ncbi.nlm.nih.gov/pubmed/25946616
http://dx.doi.org/10.1021/acs.analchem.5b01296
Descripción
Sumario:[Image: see text] Liver glycogen represents an important physiological form of energy storage. It plays a key role in the regulation of blood glucose concentrations, and dysregulations in hepatic glycogen metabolism are linked to many diseases including diabetes and insulin resistance. In this work, we develop, optimize, and validate a noninvasive protocol to measure glycogen levels in isolated perfused mouse livers using chemical exchange saturation transfer (CEST) NMR spectroscopy. Model glycogen solutions were used to determine optimal saturation pulse parameters which were then applied to intact perfused mouse livers of varying glycogen content. Glycogen measurements from serially acquired CEST Z-spectra of livers were compared with measurements from interleaved natural abundance (13)C NMR spectra. Experimental data revealed that CEST-based glycogen measurements were highly correlated with (13)C NMR glycogen spectra. Monte Carlo simulations were then used to investigate the inherent (i.e., signal-to-noise-based) errors in the quantification of glycogen with each technique. This revealed that CEST was intrinsically more precise than (13)C NMR, although in practice may be prone to other errors induced by variations in experimental conditions. We also observed that the CEST signal from glycogen in liver was significantly less than that observed from identical amounts in solution. Our results demonstrate that CEST provides an accurate, precise, and readily accessible method to noninvasively measure liver glycogen levels and their changes. Furthermore, this technique can be used to map glycogen distributions via conventional proton magnetic resonance imaging, a capability universally available on clinical and preclinical magnetic resonance imaging (MRI) scanners vs (13)C detection, which is limited to a small fraction of clinical-scale MRI scanners.