Cargando…
Assessing statistical significance in multivariable genome wide association analysis
Motivation: Although Genome Wide Association Studies (GWAS) genotype a very large number of single nucleotide polymorphisms (SNPs), the data are often analyzed one SNP at a time. The low predictive power of single SNPs, coupled with the high significance threshold needed to correct for multiple test...
Autores principales: | Buzdugan, Laura, Kalisch, Markus, Navarro, Arcadi, Schunk, Daniel, Fehr, Ernst, Bühlmann, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920127/ https://www.ncbi.nlm.nih.gov/pubmed/27153677 http://dx.doi.org/10.1093/bioinformatics/btw128 |
Ejemplares similares
-
Combining Multiple Hypothesis Testing with Machine Learning Increases the Statistical Power of Genome-wide Association Studies
por: Mieth, Bettina, et al.
Publicado: (2016) -
Intra‐individual variability in task performance after cognitive training is associated with long‐term outcomes in children
por: Cubillo, Ana, et al.
Publicado: (2022) -
metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis
por: Cichonska, Anna, et al.
Publicado: (2016) -
Multivariate genome-wide association analysis by iterative hard thresholding
por: Chu, Benjamin B, et al.
Publicado: (2023) -
Multivariate statistical methods: a primer
por: Manly, Bryan FJ, et al.
Publicado: (2016)