Cargando…
Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy
Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often i...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920167/ https://www.ncbi.nlm.nih.gov/pubmed/27151947 http://dx.doi.org/10.1242/dev.129908 |
_version_ | 1782439358194778112 |
---|---|
author | Bradley, Josephine Pope, Iestyn Masia, Francesco Sanusi, Randa Langbein, Wolfgang Swann, Karl Borri, Paola |
author_facet | Bradley, Josephine Pope, Iestyn Masia, Francesco Sanusi, Randa Langbein, Wolfgang Swann, Karl Borri, Paola |
author_sort | Bradley, Josephine |
collection | PubMed |
description | Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. |
format | Online Article Text |
id | pubmed-4920167 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-49201672016-07-25 Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy Bradley, Josephine Pope, Iestyn Masia, Francesco Sanusi, Randa Langbein, Wolfgang Swann, Karl Borri, Paola Development Techniques and Resources Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. The Company of Biologists Ltd 2016-06-15 /pmc/articles/PMC4920167/ /pubmed/27151947 http://dx.doi.org/10.1242/dev.129908 Text en © 2016. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Techniques and Resources Bradley, Josephine Pope, Iestyn Masia, Francesco Sanusi, Randa Langbein, Wolfgang Swann, Karl Borri, Paola Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy |
title | Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy |
title_full | Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy |
title_fullStr | Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy |
title_full_unstemmed | Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy |
title_short | Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy |
title_sort | quantitative imaging of lipids in live mouse oocytes and early embryos using cars microscopy |
topic | Techniques and Resources |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920167/ https://www.ncbi.nlm.nih.gov/pubmed/27151947 http://dx.doi.org/10.1242/dev.129908 |
work_keys_str_mv | AT bradleyjosephine quantitativeimagingoflipidsinlivemouseoocytesandearlyembryosusingcarsmicroscopy AT popeiestyn quantitativeimagingoflipidsinlivemouseoocytesandearlyembryosusingcarsmicroscopy AT masiafrancesco quantitativeimagingoflipidsinlivemouseoocytesandearlyembryosusingcarsmicroscopy AT sanusiranda quantitativeimagingoflipidsinlivemouseoocytesandearlyembryosusingcarsmicroscopy AT langbeinwolfgang quantitativeimagingoflipidsinlivemouseoocytesandearlyembryosusingcarsmicroscopy AT swannkarl quantitativeimagingoflipidsinlivemouseoocytesandearlyembryosusingcarsmicroscopy AT borripaola quantitativeimagingoflipidsinlivemouseoocytesandearlyembryosusingcarsmicroscopy |