Cargando…
Full-Reference Image Quality Assessment with Linear Combination of Genetically Selected Quality Measures
Information carried by an image can be distorted due to different image processing steps introduced by different electronic means of storage and communication. Therefore, development of algorithms which can automatically assess a quality of the image in a way that is consistent with human evaluation...
Autor principal: | Oszust, Mariusz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920377/ https://www.ncbi.nlm.nih.gov/pubmed/27341493 http://dx.doi.org/10.1371/journal.pone.0158333 |
Ejemplares similares
-
Full-Reference Image Quality Assessment Based on an Optimal Linear Combination of Quality Measures Selected by Simulated Annealing
por: Varga, Domonkos
Publicado: (2022) -
A Brief Survey on No-Reference Image Quality Assessment Methods for Magnetic Resonance Images
por: Stępień, Igor, et al.
Publicado: (2022) -
Fusion of Deep Convolutional Neural Networks for No-Reference Magnetic Resonance Image Quality Assessment
por: Stępień, Igor, et al.
Publicado: (2021) -
Interobserver variability in quality assessment of magnetic resonance images
por: Obuchowicz, Rafal, et al.
Publicado: (2020) -
Magnetic Resonance Image Quality Assessment by Using Non-Maximum Suppression and Entropy Analysis
por: Obuchowicz, Rafał, et al.
Publicado: (2020)