Cargando…
Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM(2.5)
Fine particulate matter ([Formula: see text] ) has a considerable impact on human health, the environment and climate change. It is estimated that with better predictions, US$9 billion can be saved over a 10-year period in the USA (State of the science fact sheet air quality. http://www.noaa.gov/fac...
Autores principales: | Ong, Bun Theang, Sugiura, Komei, Zettsu, Koji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920860/ https://www.ncbi.nlm.nih.gov/pubmed/27418719 http://dx.doi.org/10.1007/s00521-015-1955-3 |
Ejemplares similares
-
Fusion of Environmental Sensing on PM(2.5) and Deep Learning on Vehicle Detecting for Acquiring Roadside PM(2.5) Concentration Increments
por: Wang, Wen-Cheng Vincent, et al.
Publicado: (2020) -
Variability analysis in PM2.5 monitoring
por: Bhardwaj, Rashmi, et al.
Publicado: (2019) -
Magnetic Fractions of PM(2.5), PM(2.5–10), and PM(10) from Coal Fly Ash as Environmental Pollutants
por: Fomenko, Elena V., et al.
Publicado: (2021) -
Potential hotspot modeling and monitoring of PM(2.5) concentration for sustainable environmental health in Maharashtra, India
por: Ruidas, Dipankar, et al.
Publicado: (2022) -
Environmental Pollution in Shanghai Hospital Departments in Terms of PM(2.5)
por: GUO, Erbao, et al.
Publicado: (2019)