Cargando…

SET9-Mediated Regulation of TGF-β Signaling Links Protein Methylation to Pulmonary Fibrosis

TGF-β signaling regulates a variety of cellular processes, including proliferation, apoptosis, differentiation, immune responses, and fibrogenesis. Here, we describe a lysine methylation-mediated mechanism that controls the pro-fibrogenic activity of TGF-β. We find that the methyltransferase Set9 po...

Descripción completa

Detalles Bibliográficos
Autores principales: Elkouris, Maximilianos, Kontaki, Haroula, Stavropoulos, Athanasios, Antonoglou, Anastasia, Nikolaou, Kostas C., Samiotaki, Martina, Szantai, Eszter, Saviolaki, Dimitra, Brown, Peter J., Sideras, Paschalis, Panayotou, George, Talianidis, Iannis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920893/
https://www.ncbi.nlm.nih.gov/pubmed/27292644
http://dx.doi.org/10.1016/j.celrep.2016.05.051
Descripción
Sumario:TGF-β signaling regulates a variety of cellular processes, including proliferation, apoptosis, differentiation, immune responses, and fibrogenesis. Here, we describe a lysine methylation-mediated mechanism that controls the pro-fibrogenic activity of TGF-β. We find that the methyltransferase Set9 potentiates TGF-β signaling by targeting Smad7, an inhibitory downstream effector. Smad7 methylation promotes interaction with the E3 ligase Arkadia and, thus, ubiquitination-dependent degradation. Depletion or pharmacological inhibition of Set9 results in elevated Smad7 protein levels and inhibits TGF-β-dependent expression of genes encoding extracellular matrix components. The inhibitory effect of Set9 on TGF-β-mediated extracellular matrix production is further demonstrated in mouse models of pulmonary fibrosis. Lung fibrosis induced by bleomycin or Ad-TGF-β treatment was highly compromised in Set9-deficient mice. These results uncover a complex regulatory interplay among multiple Smad7 modifications and highlight the possibility that protein methyltransferases may represent promising therapeutic targets for treating lung fibrosis.