Cargando…
Fabrication of Laser-reduced Graphene Oxide in Liquid Nitrogen Environment
Porous structure of reduced graphene oxide (rGO) plays an important role in developing flexible graphene-based devices. In this work, we report a novel methodology for reduction of freestanding graphite oxide (GO) sheet by picosecond pulse laser direct writing in liquid nitrogen. Non-agglomerate and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922015/ https://www.ncbi.nlm.nih.gov/pubmed/27345474 http://dx.doi.org/10.1038/srep28913 |
Sumario: | Porous structure of reduced graphene oxide (rGO) plays an important role in developing flexible graphene-based devices. In this work, we report a novel methodology for reduction of freestanding graphite oxide (GO) sheet by picosecond pulse laser direct writing in liquid nitrogen. Non-agglomerate and porous structure of rGO is fabricated successfully due to frozen effect during laser processing. Compared with laser-irradiated rGO developed in N(2) gas at ambient environment, the frozen rGO developed in liquid N(2) shows better ordered structure with less defects, crack-free morphology as well as better electron supercapacitor performance including 50–60 Ω/sq in sheet electrical resistance. Mechanism of cryotemperature photoreduction GO is also discussed. |
---|