Cargando…
Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum
This contribution presents a novel homogenization technique for modeling heterogeneous materials with micro-inertia effects such as locally resonant acoustic metamaterials. Linear elastodynamics is used to model the micro and macro scale problems and an extended first order Computational Homogenizat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922422/ https://www.ncbi.nlm.nih.gov/pubmed/27429501 http://dx.doi.org/10.1007/s00466-015-1254-y |
_version_ | 1782439619564929024 |
---|---|
author | Sridhar, A. Kouznetsova, V. G. Geers, M. G. D. |
author_facet | Sridhar, A. Kouznetsova, V. G. Geers, M. G. D. |
author_sort | Sridhar, A. |
collection | PubMed |
description | This contribution presents a novel homogenization technique for modeling heterogeneous materials with micro-inertia effects such as locally resonant acoustic metamaterials. Linear elastodynamics is used to model the micro and macro scale problems and an extended first order Computational Homogenization framework is used to establish the coupling. Craig Bampton Mode Synthesis is then applied to solve and eliminate the microscale problem, resulting in a compact closed form description of the microdynamics that accurately captures the Local Resonance phenomena. The resulting equations represent an enriched continuum in which additional kinematic degrees of freedom emerge to account for Local Resonance effects which would otherwise be absent in a classical continuum. Such an approach retains the accuracy and robustness offered by a standard Computational Homogenization implementation, whereby the problem and the computational time are reduced to the on-line solution of one scale only. |
format | Online Article Text |
id | pubmed-4922422 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-49224222016-07-13 Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum Sridhar, A. Kouznetsova, V. G. Geers, M. G. D. Comput Mech Original Paper This contribution presents a novel homogenization technique for modeling heterogeneous materials with micro-inertia effects such as locally resonant acoustic metamaterials. Linear elastodynamics is used to model the micro and macro scale problems and an extended first order Computational Homogenization framework is used to establish the coupling. Craig Bampton Mode Synthesis is then applied to solve and eliminate the microscale problem, resulting in a compact closed form description of the microdynamics that accurately captures the Local Resonance phenomena. The resulting equations represent an enriched continuum in which additional kinematic degrees of freedom emerge to account for Local Resonance effects which would otherwise be absent in a classical continuum. Such an approach retains the accuracy and robustness offered by a standard Computational Homogenization implementation, whereby the problem and the computational time are reduced to the on-line solution of one scale only. Springer Berlin Heidelberg 2016-02-08 2016 /pmc/articles/PMC4922422/ /pubmed/27429501 http://dx.doi.org/10.1007/s00466-015-1254-y Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Paper Sridhar, A. Kouznetsova, V. G. Geers, M. G. D. Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum |
title | Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum |
title_full | Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum |
title_fullStr | Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum |
title_full_unstemmed | Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum |
title_short | Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum |
title_sort | homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922422/ https://www.ncbi.nlm.nih.gov/pubmed/27429501 http://dx.doi.org/10.1007/s00466-015-1254-y |
work_keys_str_mv | AT sridhara homogenizationoflocallyresonantacousticmetamaterialstowardsanemergentenrichedcontinuum AT kouznetsovavg homogenizationoflocallyresonantacousticmetamaterialstowardsanemergentenrichedcontinuum AT geersmgd homogenizationoflocallyresonantacousticmetamaterialstowardsanemergentenrichedcontinuum |