Cargando…
Antifibrotic Effects of the Dual CCR2/CCR5 Antagonist Cenicriviroc in Animal Models of Liver and Kidney Fibrosis
BACKGROUND & AIMS: Interactions between C-C chemokine receptor types 2 (CCR2) and 5 (CCR5) and their ligands, including CCL2 and CCL5, mediate fibrogenesis by promoting monocyte/macrophage recruitment and tissue infiltration, as well as hepatic stellate cell activation. Cenicriviroc (CVC) is an...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922569/ https://www.ncbi.nlm.nih.gov/pubmed/27347680 http://dx.doi.org/10.1371/journal.pone.0158156 |
Sumario: | BACKGROUND & AIMS: Interactions between C-C chemokine receptor types 2 (CCR2) and 5 (CCR5) and their ligands, including CCL2 and CCL5, mediate fibrogenesis by promoting monocyte/macrophage recruitment and tissue infiltration, as well as hepatic stellate cell activation. Cenicriviroc (CVC) is an oral, dual CCR2/CCR5 antagonist with nanomolar potency against both receptors. CVC’s anti-inflammatory and antifibrotic effects were evaluated in a range of preclinical models of inflammation and fibrosis. METHODS: Monocyte/macrophage recruitment was assessed in vivo in a mouse model of thioglycollate-induced peritonitis. CCL2-induced chemotaxis was evaluated ex vivo on mouse monocytes. CVC’s antifibrotic effects were evaluated in a thioacetamide-induced rat model of liver fibrosis and mouse models of diet-induced non-alcoholic steatohepatitis (NASH) and renal fibrosis. Study assessments included body and liver/kidney weight, liver function test, liver/kidney morphology and collagen deposition, fibrogenic gene and protein expression, and pharmacokinetic analyses. RESULTS: CVC significantly reduced monocyte/macrophage recruitment in vivo at doses ≥20 mg/kg/day (p < 0.05). At these doses, CVC showed antifibrotic effects, with significant reductions in collagen deposition (p < 0.05), and collagen type 1 protein and mRNA expression across the three animal models of fibrosis. In the NASH model, CVC significantly reduced the non-alcoholic fatty liver disease activity score (p < 0.05 vs. controls). CVC treatment had no notable effect on body or liver/kidney weight. CONCLUSIONS: CVC displayed potent anti-inflammatory and antifibrotic activity in a range of animal fibrosis models, supporting human testing for fibrotic diseases. Further experimental studies are needed to clarify the underlying mechanisms of CVC’s antifibrotic effects. A Phase 2b study in adults with NASH and liver fibrosis is fully enrolled (CENTAUR Study 652-2-203; NCT02217475). |
---|