Cargando…
Genes Encoding Cucumber Full-Size ABCG Proteins Show Different Responses to Plant Growth Regulators and Sclareolide
Full-size members of the ABCG (ATP-binding cassette, subfamily G) subfamily of ABC transporters have been found only in plants and fungi. The plant genes encoding full-size ABCGs identified so far appeared to be differentially regulated under various environmental constraints, plant growth regulator...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4923091/ https://www.ncbi.nlm.nih.gov/pubmed/27429510 http://dx.doi.org/10.1007/s11105-015-0956-9 |
Sumario: | Full-size members of the ABCG (ATP-binding cassette, subfamily G) subfamily of ABC transporters have been found only in plants and fungi. The plant genes encoding full-size ABCGs identified so far appeared to be differentially regulated under various environmental constraints, plant growth regulators, and microbial elicitors, indicating a broad functional role of these proteins in plant responses to abiotic and biotic stress. Nevertheless, the structure and physiological function of full-size ABCGs in many plant species are still unknown. We have recently identified 16 genes encoding full-size ABCG proteins in cucumber and found that the transcripts of two of them, CsABCG36 (CsPDR8) and CsABCG40 (CsPDR12), are most abundant in roots and are significantly affected by phytohormones and auxin herbicide. In this study, we analyzed the structure and phylogeny of all the full-size cucumber ABCG transporters and studied the organ expression profiles of the remaining 14 CsABCG genes. In addition, we investigated the effect of different plant growth regulators and the diterpene sclareolide on CsABCG expression in cucumber roots. Until now, the full-size plant ABCG transporters have been grouped into five different clusters. The new phylogenetic analysis of full-size ABCGs from model plants and cucumber clustered these proteins into six different subgroups. Interestingly, the expression profiles of cucumber ABCG genes assigned to the same clusters were not correlated, suggesting functional diversification or different regulatory mechanisms of the full-size cucumber ABCG proteins. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11105-015-0956-9) contains supplementary material, which is available to authorized users. |
---|