Cargando…

Difference in transient ischemia-induced neuronal damage and glucose transporter-1 immunoreactivity in the hippocampus between adult and young gerbils

OBJECTIVE(S): The alteration of glucose transporters is closely related with the pathogenesis of brain edema. We compared neuronal damage/death in the hippocampus between adult and young gerbils following transient cerebral ischemia/reperfusion and changes of glucose transporter-1(GLUT-1)-immunoreac...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Seung Min, Lee, Jae-Chul, Chen, Bai Hui, Shin, Bich-Na, Cho, Jeong Hwi, Kim, In Hye, Park, Joon Ha, Won, Moo-Ho, Ahn, Ji Hyeon, Tae, Hyun-Jin, Shin, Myoung Cheol, Park, Chan Woo, Cho, Jun Hwi, Lee, Hui Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mashhad University of Medical Sciences 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4923473/
https://www.ncbi.nlm.nih.gov/pubmed/27403259
Descripción
Sumario:OBJECTIVE(S): The alteration of glucose transporters is closely related with the pathogenesis of brain edema. We compared neuronal damage/death in the hippocampus between adult and young gerbils following transient cerebral ischemia/reperfusion and changes of glucose transporter-1(GLUT-1)-immunoreactive microvessels in their ischemic hippocampal CA1 region. MATERIALS AND METHODS: Transient cerebral ischemia was developed by 5-min occlusion of both common carotid arteries. Neuronal damage was examined by cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histofluorescence staining and changes in GLUT-1 expression was carried out by immunohistochemistry. RESULTS: About 90% of pyramidal neurons only in the adult CA1 region were damaged after ischemia/reperfusion; in the young, about 53 % of pyramidal neurons were damaged from 7 days after ischemia/reperfusion. The density of GLUT-1-immunoreactive microvessels was significantly higher in the young sham-group than that in the adult sham-group. In the ischemia-operated-groups, the density of GLUT-1-immunoreactive microvessels was significantly decreased in the adult and young at 1 and 4 days post-ischemia, respectively, thereafter, the density of GLUT-1-immunoreactive microvessels was gradually increased in both groups after ischemia/reperfusion. CONCLUSION: CA1 pyramidal neurons of the young gerbil were damaged much later than that in the adult and that GLUT-1-immunoreactive microvessels were significantly decreased later in the young. These data indicate that GLUT-1 might differently contribute to neuronal damage according to age after ischemic insults.