Cargando…

Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD patients

Rhinovirus infection is a major cause of chronic obstructive pulmonary disease (COPD) exacerbations and may contribute to the development into severe stages of COPD. The macrolide antibiotic azithromycin may exert anti-viral actions and has been reported to reduce exacerbations in COPD. However, lit...

Descripción completa

Detalles Bibliográficos
Autores principales: Menzel, Mandy, Akbarshahi, Hamid, Bjermer, Leif, Uller, Lena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4923851/
https://www.ncbi.nlm.nih.gov/pubmed/27350308
http://dx.doi.org/10.1038/srep28698
Descripción
Sumario:Rhinovirus infection is a major cause of chronic obstructive pulmonary disease (COPD) exacerbations and may contribute to the development into severe stages of COPD. The macrolide antibiotic azithromycin may exert anti-viral actions and has been reported to reduce exacerbations in COPD. However, little is known about its anti-viral actions on bronchial epithelial cells at clinically relevant concentrations. Primary bronchial epithelial cells from COPD donors and healthy individuals were treated continuously with azithromycin starting 24 h before infection with rhinovirus RV16. Expression of interferons, RIG-I like helicases, pro-inflammatory cytokines and viral load were analysed. Azithromycin transiently increased expression of IFNβ and IFNλ1 and RIG-I like helicases in un-infected COPD cells. Further, azithromycin augmented RV16-induced expression of interferons and RIG-I like helicases in COPD cells but not in healthy epithelial cells. Azithromycin also decreased viral load. However, it only modestly altered RV16-induced pro-inflammatory cytokine expression. Adding budesonide did not reduce interferon-inducing effects of azithromycin. Possibly by inducing expression of RIG-I like helicases, azithromycin increased rhinovirus-induced expression of interferons in COPD but not in healthy bronchial epithelium. These effects would reduce bronchial viral load, supporting azithromycin’s emerging role in prevention of exacerbations of COPD.