Cargando…
The impact of feature selection on one and two-class classification performance for plant microRNAs
MicroRNAs (miRNAs) are short nucleotide sequences that form a typical hairpin structure which is recognized by a complex enzyme machinery. It ultimately leads to the incorporation of 18–24 nt long mature miRNAs into RISC where they act as recognition keys to aid in regulation of target mRNAs. It is...
Autores principales: | Khalifa, Waleed, Yousef, Malik, Saçar Demirci, Müşerref Duygu, Allmer, Jens |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924126/ https://www.ncbi.nlm.nih.gov/pubmed/27366641 http://dx.doi.org/10.7717/peerj.2135 |
Ejemplares similares
-
Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants
por: Yousef, Malik, et al.
Publicado: (2016) -
Delineating the impact of machine learning elements in pre-microRNA detection
por: Saçar Demirci, Müşerref Duygu, et al.
Publicado: (2017) -
Computational analysis of microRNA-mediated interactions in SARS-CoV-2 infection
por: Saçar Demirci, Müşerref Duygu, et al.
Publicado: (2020) -
Improving the Quality of Positive Datasets for the Establishment of Machine Learning Models for pre-microRNA Detection
por: Demirci, Müşerref Duygu Saçar, et al.
Publicado: (2017) -
On the performance of pre-microRNA detection algorithms
por: Saçar Demirci, Müşerref Duygu, et al.
Publicado: (2017)