Cargando…

Green tea extract catechin improves internal cardiac muscle relaxation in RCM mice

BACKGROUND: Diastolic dysfunction refers to an impaired relaxation and an abnormality in a heart’s filling during diastole while left ventricular systolic function is preserved. Diastolic dysfunction is commonly observed in patients with primary hypertension, diabetes and cardiomyopathies such as hy...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaoqin, Zhang, Zhengyu, Wu, Gang, Nan, Changlong, Shen, Wen, Hua, Yimin, Huang, Xupei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924244/
https://www.ncbi.nlm.nih.gov/pubmed/27353642
http://dx.doi.org/10.1186/s12929-016-0264-1
Descripción
Sumario:BACKGROUND: Diastolic dysfunction refers to an impaired relaxation and an abnormality in a heart’s filling during diastole while left ventricular systolic function is preserved. Diastolic dysfunction is commonly observed in patients with primary hypertension, diabetes and cardiomyopathies such as hypertrophic cardiomyopathy or restrictive cardiomyopathy. We have generated a restrictive cardiomyopathy (RCM) mouse model with troponin mutations in the heart to mimic the human RCM patients carrying the same mutations. RESULTS: In the present study, we have investigated the ventricular muscle internal dynamics and pressure developed during systole and diastole by inserting a micro-catheter into the left ventricle of the RCM mice with or without treatment of desensitizer green tea extracts catechins. Our results demonstrate that green tea catechin is able to correct diastolic dysfunction in RCM mainly by improving ventricular compliance and reducing the internal muscle rigidity caused by myofibril hypersensitivity to Ca(2+). CONCLUSION: Green tea extract catechin is effective in correcting diastolic dysfunction and improving ventricular muscle intrinsic compliance in RCM caused by troponin mutations.