Cargando…

Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrIC gene cluster via a bacteriophage

BACKGROUND: Shigella spp. are the primary causative agents of bacillary dysentery. Since its emergence in the late 1980s, the S. flexneri serotype 1c remains poorly understood, particularly with regard to its origin and genetic evolution. This article provides a molecular insight into this novel ser...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Swee-Seong, Carlin, Nils I. A., Talukder, Kaisar A., Cam, Phung D., Verma, Naresh K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924310/
https://www.ncbi.nlm.nih.gov/pubmed/27349637
http://dx.doi.org/10.1186/s12866-016-0746-z
_version_ 1782439848497381376
author Tang, Swee-Seong
Carlin, Nils I. A.
Talukder, Kaisar A.
Cam, Phung D.
Verma, Naresh K.
author_facet Tang, Swee-Seong
Carlin, Nils I. A.
Talukder, Kaisar A.
Cam, Phung D.
Verma, Naresh K.
author_sort Tang, Swee-Seong
collection PubMed
description BACKGROUND: Shigella spp. are the primary causative agents of bacillary dysentery. Since its emergence in the late 1980s, the S. flexneri serotype 1c remains poorly understood, particularly with regard to its origin and genetic evolution. This article provides a molecular insight into this novel serotype and the gtrIC gene cluster that determines its unique immune recognition. RESULTS: A PCR of the gtrIC cluster showed that serotype 1c isolates from different geographical origins were genetically conserved. An analysis of sequences flanking the gtrIC cluster revealed remnants of a prophage genome, in particular integrase and tRNA(Pro) genes. Meanwhile, Southern blot analyses on serotype 1c, 1a and 1b strains indicated that all the tested serotype 1c strains may have had a common origin that has since remained distinct from the closely related 1a and 1b serotypes. The identification of prophage genes upstream of the gtrIC cluster is consistent with the notion of bacteriophage-mediated integration of the gtrIC cluster into a pre-existing serotype. CONCLUSIONS: This is the first study to show that serotype 1c isolates from different geographical origins share an identical pattern of genetic arrangement, suggesting that serotype 1c strains may have originated from a single parental strain. Analysis of the sequence around the gtrIC cluster revealed a new site for the integration of the serotype converting phages of S. flexneri. Understanding the origin of new pathogenic serotypes and the molecular basis of serotype conversion in S. flexneri would provide information for developing cross-reactive Shigella vaccines. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12866-016-0746-z) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4924310
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-49243102016-06-29 Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrIC gene cluster via a bacteriophage Tang, Swee-Seong Carlin, Nils I. A. Talukder, Kaisar A. Cam, Phung D. Verma, Naresh K. BMC Microbiol Research Article BACKGROUND: Shigella spp. are the primary causative agents of bacillary dysentery. Since its emergence in the late 1980s, the S. flexneri serotype 1c remains poorly understood, particularly with regard to its origin and genetic evolution. This article provides a molecular insight into this novel serotype and the gtrIC gene cluster that determines its unique immune recognition. RESULTS: A PCR of the gtrIC cluster showed that serotype 1c isolates from different geographical origins were genetically conserved. An analysis of sequences flanking the gtrIC cluster revealed remnants of a prophage genome, in particular integrase and tRNA(Pro) genes. Meanwhile, Southern blot analyses on serotype 1c, 1a and 1b strains indicated that all the tested serotype 1c strains may have had a common origin that has since remained distinct from the closely related 1a and 1b serotypes. The identification of prophage genes upstream of the gtrIC cluster is consistent with the notion of bacteriophage-mediated integration of the gtrIC cluster into a pre-existing serotype. CONCLUSIONS: This is the first study to show that serotype 1c isolates from different geographical origins share an identical pattern of genetic arrangement, suggesting that serotype 1c strains may have originated from a single parental strain. Analysis of the sequence around the gtrIC cluster revealed a new site for the integration of the serotype converting phages of S. flexneri. Understanding the origin of new pathogenic serotypes and the molecular basis of serotype conversion in S. flexneri would provide information for developing cross-reactive Shigella vaccines. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12866-016-0746-z) contains supplementary material, which is available to authorized users. BioMed Central 2016-06-27 /pmc/articles/PMC4924310/ /pubmed/27349637 http://dx.doi.org/10.1186/s12866-016-0746-z Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Tang, Swee-Seong
Carlin, Nils I. A.
Talukder, Kaisar A.
Cam, Phung D.
Verma, Naresh K.
Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrIC gene cluster via a bacteriophage
title Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrIC gene cluster via a bacteriophage
title_full Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrIC gene cluster via a bacteriophage
title_fullStr Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrIC gene cluster via a bacteriophage
title_full_unstemmed Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrIC gene cluster via a bacteriophage
title_short Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrIC gene cluster via a bacteriophage
title_sort shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtric gene cluster via a bacteriophage
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924310/
https://www.ncbi.nlm.nih.gov/pubmed/27349637
http://dx.doi.org/10.1186/s12866-016-0746-z
work_keys_str_mv AT tangsweeseong shigellaflexneriserotype1cderivedfromserotype1abyacquisitionofgtricgeneclusterviaabacteriophage
AT carlinnilsia shigellaflexneriserotype1cderivedfromserotype1abyacquisitionofgtricgeneclusterviaabacteriophage
AT talukderkaisara shigellaflexneriserotype1cderivedfromserotype1abyacquisitionofgtricgeneclusterviaabacteriophage
AT camphungd shigellaflexneriserotype1cderivedfromserotype1abyacquisitionofgtricgeneclusterviaabacteriophage
AT vermanareshk shigellaflexneriserotype1cderivedfromserotype1abyacquisitionofgtricgeneclusterviaabacteriophage