Cargando…

RACK1 overexpression is linked to acquired imatinib resistance in gastrointestinal stromal tumor

Although treatment with imatinib, which inhibits KIT and PDGFR, controls advanced disease in about 80% of gastrointestinal stromal tumor (GIST) patients, resistance to imatinib often develops. RACK1 (Receptor for Activated C Kinase 1) is a ribosomal protein that contributes to tumor progression by a...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Xiaodong, Xue, Anwei, Fang, Yong, Shu, Ping, Ling, Jiaqian, Hou, Yingyong, Shen, Kuntang, Qin, Jing, Sun, Yihong, Qin, Xinyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924716/
https://www.ncbi.nlm.nih.gov/pubmed/26893362
http://dx.doi.org/10.18632/oncotarget.7426
Descripción
Sumario:Although treatment with imatinib, which inhibits KIT and PDGFR, controls advanced disease in about 80% of gastrointestinal stromal tumor (GIST) patients, resistance to imatinib often develops. RACK1 (Receptor for Activated C Kinase 1) is a ribosomal protein that contributes to tumor progression by affecting proliferation, apoptosis, angiogenesis, and migration. Here, we found that c-KIT binds to RACK1 and increases proteasome-mediated RACK1 degradation. Imatinib treatment inhibits c-KIT activity and prevents RACK1 degradation, and RACK1 is upregulated in imatinib-resistant GIST cells compared to non-resistant parental cells. Moreover, Erk and Akt signaling were reactivated by imatinib in resistant GIST cells. RACK1 functioned as a scaffold protein and mediated Erk and Akt reactivation after imatinib treatment, thereby promoting GIST cell survival even in the presence of imatinib. Combined inhibition of KIT and RACK1 inhibited growth in imatinib-resistant GIST cell lines and reduced tumor relapse in GIST xenografts. These findings provide new insight into the role of RACK1 in imatinib resistance in GIST.