Cargando…

A novel miR-34a target, protein kinase D1, stimulates cancer stemness and drug resistance through GSK3/β-catenin signaling in breast cancer

One of the properties of human breast cancer cells is cancer stemness, which is characterized by self-renewal capability and drug resistance. Protein kinase D1 (PRKD1) functions as a key regulator of many cellular processes and is downregulated in invasive breast cancer cells. In this study, we foun...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Do Yeon, Park, Eun Young, Chang, EunSun, Kang, Hyeok-Gu, Koo, Yoonjin, Lee, Eun Ji, Ko, Je Yeong, Kong, Hyun Kyung, Chun, Kyung-Hee, Park, Jong Hoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924752/
https://www.ncbi.nlm.nih.gov/pubmed/26895471
http://dx.doi.org/10.18632/oncotarget.7443
Descripción
Sumario:One of the properties of human breast cancer cells is cancer stemness, which is characterized by self-renewal capability and drug resistance. Protein kinase D1 (PRKD1) functions as a key regulator of many cellular processes and is downregulated in invasive breast cancer cells. In this study, we found that PRKD1 was upregulated in MCF-7-ADR human breast cancer cells characterized by drug resistance. Additionally, we discovered that PRKD1 expression was negatively regulated by miR-34a binding to the PRKD1 3′-UTR. PRKD1 expression increased following performance of a tumorsphere formation assay in MCF-7-ADR cells. We also found that reduction of PRKD1 by ectopic miR-34a expression or PRKD1 siRNA treatment resulted in suppressed self-renewal ability in breast cancer stem cells. Furthermore, we confirmed that the PRKD1 inhibitor CRT0066101 reduced phosphorylated PKD/PKCμ, leading to suppression of breast cancer stemness through GSK3/β-catenin signaling. PRKD1 inhibition also influenced apoptosis initiation in MCF-7-ADR cells. Tumors from nude mice treated with miR-34a or CRT0066101 showed suppressed tumor growth, proliferation, and induced apoptosis. These results provide evidence that regulation of PRKD1, a novel miR-34a target, contributes to overcoming cancer stemness and drug resistance in human breast cancer.