Cargando…
Glucose-regulated protein 94 deficiency induces squamous cell metaplasia and suppresses PTEN-null driven endometrial epithelial tumor development
Endometrial carcinoma is the most prevalent gynecologic cancer in the United States. The tumor suppressor gene Pten (phosphatase and tensin homolog) is commonly mutated in the more common type 1 (endometrioid) subtype. The glucose-regulated protein 94 (GRP94) is emerging as a novel regulator for can...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924759/ https://www.ncbi.nlm.nih.gov/pubmed/26910913 http://dx.doi.org/10.18632/oncotarget.7450 |
_version_ | 1782439918921842688 |
---|---|
author | Shen, Jieli Yao, Lijing Lin, Yvonne G. DeMayo, Francesco J. Lydon, John P. Dubeau, Louis Lee, Amy S. |
author_facet | Shen, Jieli Yao, Lijing Lin, Yvonne G. DeMayo, Francesco J. Lydon, John P. Dubeau, Louis Lee, Amy S. |
author_sort | Shen, Jieli |
collection | PubMed |
description | Endometrial carcinoma is the most prevalent gynecologic cancer in the United States. The tumor suppressor gene Pten (phosphatase and tensin homolog) is commonly mutated in the more common type 1 (endometrioid) subtype. The glucose-regulated protein 94 (GRP94) is emerging as a novel regulator for cancer development. Here we report that expression profiles from the Cancer Genome Atlas (TCGA) showed significantly increased Grp94 mRNA levels in endometrial tumor versus normal tissues, correlating with highly elevated GRP94 protein expression in patient samples and the requirement of GRP94 for maintaining viability of human endometrioid adenocarcinoma (EAC) cell lines. Through generation of uterus-specific knockout mouse models with deletion of Grp94 alone (c94(f/f)) or in combination with Pten (cP(f/f)94(f/f)), we discovered that c94(f/f) uteri induced squamous cell metaplasia (SCM) and reduced active nuclear β-catenin. The cP(f/f)94(f/f) uteri showed accelerated SCM and suppression of PTEN-null driven EAC, with reduced cellular proliferation, attenuated β-catenin signaling and decreased AKT/S6 activation in the SCM. In contrast to single PTEN knockout uteri (cP(f/f)), cP(f/f)94(f/f) uteri showed no decrease in E-cadherin level and no invasive lesion. Collectively, our study implies that GRP94 downregulation induces SCM in EAC and suppresses AKT/S6 signaling, providing a novel mechanism for suppressing EAC progression. |
format | Online Article Text |
id | pubmed-4924759 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-49247592016-07-13 Glucose-regulated protein 94 deficiency induces squamous cell metaplasia and suppresses PTEN-null driven endometrial epithelial tumor development Shen, Jieli Yao, Lijing Lin, Yvonne G. DeMayo, Francesco J. Lydon, John P. Dubeau, Louis Lee, Amy S. Oncotarget Research Paper Endometrial carcinoma is the most prevalent gynecologic cancer in the United States. The tumor suppressor gene Pten (phosphatase and tensin homolog) is commonly mutated in the more common type 1 (endometrioid) subtype. The glucose-regulated protein 94 (GRP94) is emerging as a novel regulator for cancer development. Here we report that expression profiles from the Cancer Genome Atlas (TCGA) showed significantly increased Grp94 mRNA levels in endometrial tumor versus normal tissues, correlating with highly elevated GRP94 protein expression in patient samples and the requirement of GRP94 for maintaining viability of human endometrioid adenocarcinoma (EAC) cell lines. Through generation of uterus-specific knockout mouse models with deletion of Grp94 alone (c94(f/f)) or in combination with Pten (cP(f/f)94(f/f)), we discovered that c94(f/f) uteri induced squamous cell metaplasia (SCM) and reduced active nuclear β-catenin. The cP(f/f)94(f/f) uteri showed accelerated SCM and suppression of PTEN-null driven EAC, with reduced cellular proliferation, attenuated β-catenin signaling and decreased AKT/S6 activation in the SCM. In contrast to single PTEN knockout uteri (cP(f/f)), cP(f/f)94(f/f) uteri showed no decrease in E-cadherin level and no invasive lesion. Collectively, our study implies that GRP94 downregulation induces SCM in EAC and suppresses AKT/S6 signaling, providing a novel mechanism for suppressing EAC progression. Impact Journals LLC 2016-02-17 /pmc/articles/PMC4924759/ /pubmed/26910913 http://dx.doi.org/10.18632/oncotarget.7450 Text en Copyright: © 2016 Shen et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Shen, Jieli Yao, Lijing Lin, Yvonne G. DeMayo, Francesco J. Lydon, John P. Dubeau, Louis Lee, Amy S. Glucose-regulated protein 94 deficiency induces squamous cell metaplasia and suppresses PTEN-null driven endometrial epithelial tumor development |
title | Glucose-regulated protein 94 deficiency induces squamous cell metaplasia and suppresses PTEN-null driven endometrial epithelial tumor development |
title_full | Glucose-regulated protein 94 deficiency induces squamous cell metaplasia and suppresses PTEN-null driven endometrial epithelial tumor development |
title_fullStr | Glucose-regulated protein 94 deficiency induces squamous cell metaplasia and suppresses PTEN-null driven endometrial epithelial tumor development |
title_full_unstemmed | Glucose-regulated protein 94 deficiency induces squamous cell metaplasia and suppresses PTEN-null driven endometrial epithelial tumor development |
title_short | Glucose-regulated protein 94 deficiency induces squamous cell metaplasia and suppresses PTEN-null driven endometrial epithelial tumor development |
title_sort | glucose-regulated protein 94 deficiency induces squamous cell metaplasia and suppresses pten-null driven endometrial epithelial tumor development |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924759/ https://www.ncbi.nlm.nih.gov/pubmed/26910913 http://dx.doi.org/10.18632/oncotarget.7450 |
work_keys_str_mv | AT shenjieli glucoseregulatedprotein94deficiencyinducessquamouscellmetaplasiaandsuppressesptennulldrivenendometrialepithelialtumordevelopment AT yaolijing glucoseregulatedprotein94deficiencyinducessquamouscellmetaplasiaandsuppressesptennulldrivenendometrialepithelialtumordevelopment AT linyvonneg glucoseregulatedprotein94deficiencyinducessquamouscellmetaplasiaandsuppressesptennulldrivenendometrialepithelialtumordevelopment AT demayofrancescoj glucoseregulatedprotein94deficiencyinducessquamouscellmetaplasiaandsuppressesptennulldrivenendometrialepithelialtumordevelopment AT lydonjohnp glucoseregulatedprotein94deficiencyinducessquamouscellmetaplasiaandsuppressesptennulldrivenendometrialepithelialtumordevelopment AT dubeaulouis glucoseregulatedprotein94deficiencyinducessquamouscellmetaplasiaandsuppressesptennulldrivenendometrialepithelialtumordevelopment AT leeamys glucoseregulatedprotein94deficiencyinducessquamouscellmetaplasiaandsuppressesptennulldrivenendometrialepithelialtumordevelopment |