Cargando…

A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis

Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities underlying AML are extremely heterogeneous among patients, making prognosis and treatment selection very difficult. While clinical proteomics data has the potential to improve prognosis accuracy, thus far, the qu...

Descripción completa

Detalles Bibliográficos
Autores principales: Noren, David P., Long, Byron L., Norel, Raquel, Rrhissorrakrai, Kahn, Hess, Kenneth, Hu, Chenyue Wendy, Bisberg, Alex J., Schultz, Andre, Engquist, Erik, Liu, Li, Lin, Xihui, Chen, Gregory M., Xie, Honglei, Hunter, Geoffrey A. M., Boutros, Paul C., Stepanov, Oleg, Norman, Thea, Friend, Stephen H., Stolovitzky, Gustavo, Kornblau, Steven, Qutub, Amina A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924788/
https://www.ncbi.nlm.nih.gov/pubmed/27351836
http://dx.doi.org/10.1371/journal.pcbi.1004890
_version_ 1782439925577154560
author Noren, David P.
Long, Byron L.
Norel, Raquel
Rrhissorrakrai, Kahn
Hess, Kenneth
Hu, Chenyue Wendy
Bisberg, Alex J.
Schultz, Andre
Engquist, Erik
Liu, Li
Lin, Xihui
Chen, Gregory M.
Xie, Honglei
Hunter, Geoffrey A. M.
Boutros, Paul C.
Stepanov, Oleg
Norman, Thea
Friend, Stephen H.
Stolovitzky, Gustavo
Kornblau, Steven
Qutub, Amina A.
author_facet Noren, David P.
Long, Byron L.
Norel, Raquel
Rrhissorrakrai, Kahn
Hess, Kenneth
Hu, Chenyue Wendy
Bisberg, Alex J.
Schultz, Andre
Engquist, Erik
Liu, Li
Lin, Xihui
Chen, Gregory M.
Xie, Honglei
Hunter, Geoffrey A. M.
Boutros, Paul C.
Stepanov, Oleg
Norman, Thea
Friend, Stephen H.
Stolovitzky, Gustavo
Kornblau, Steven
Qutub, Amina A.
author_sort Noren, David P.
collection PubMed
description Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities underlying AML are extremely heterogeneous among patients, making prognosis and treatment selection very difficult. While clinical proteomics data has the potential to improve prognosis accuracy, thus far, the quantitative means to do so have yet to be developed. Here we report the results and insights gained from the DREAM 9 Acute Myeloid Prediction Outcome Prediction Challenge (AML-OPC), a crowdsourcing effort designed to promote the development of quantitative methods for AML prognosis prediction. We identify the most accurate and robust models in predicting patient response to therapy, remission duration, and overall survival. We further investigate patient response to therapy, a clinically actionable prediction, and find that patients that are classified as resistant to therapy are harder to predict than responsive patients across the 31 models submitted to the challenge. The top two performing models, which held a high sensitivity to these patients, substantially utilized the proteomics data to make predictions. Using these models, we also identify which signaling proteins were useful in predicting patient therapeutic response.
format Online
Article
Text
id pubmed-4924788
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-49247882016-07-18 A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis Noren, David P. Long, Byron L. Norel, Raquel Rrhissorrakrai, Kahn Hess, Kenneth Hu, Chenyue Wendy Bisberg, Alex J. Schultz, Andre Engquist, Erik Liu, Li Lin, Xihui Chen, Gregory M. Xie, Honglei Hunter, Geoffrey A. M. Boutros, Paul C. Stepanov, Oleg Norman, Thea Friend, Stephen H. Stolovitzky, Gustavo Kornblau, Steven Qutub, Amina A. PLoS Comput Biol Research Article Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities underlying AML are extremely heterogeneous among patients, making prognosis and treatment selection very difficult. While clinical proteomics data has the potential to improve prognosis accuracy, thus far, the quantitative means to do so have yet to be developed. Here we report the results and insights gained from the DREAM 9 Acute Myeloid Prediction Outcome Prediction Challenge (AML-OPC), a crowdsourcing effort designed to promote the development of quantitative methods for AML prognosis prediction. We identify the most accurate and robust models in predicting patient response to therapy, remission duration, and overall survival. We further investigate patient response to therapy, a clinically actionable prediction, and find that patients that are classified as resistant to therapy are harder to predict than responsive patients across the 31 models submitted to the challenge. The top two performing models, which held a high sensitivity to these patients, substantially utilized the proteomics data to make predictions. Using these models, we also identify which signaling proteins were useful in predicting patient therapeutic response. Public Library of Science 2016-06-28 /pmc/articles/PMC4924788/ /pubmed/27351836 http://dx.doi.org/10.1371/journal.pcbi.1004890 Text en © 2016 Noren et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Noren, David P.
Long, Byron L.
Norel, Raquel
Rrhissorrakrai, Kahn
Hess, Kenneth
Hu, Chenyue Wendy
Bisberg, Alex J.
Schultz, Andre
Engquist, Erik
Liu, Li
Lin, Xihui
Chen, Gregory M.
Xie, Honglei
Hunter, Geoffrey A. M.
Boutros, Paul C.
Stepanov, Oleg
Norman, Thea
Friend, Stephen H.
Stolovitzky, Gustavo
Kornblau, Steven
Qutub, Amina A.
A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis
title A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis
title_full A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis
title_fullStr A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis
title_full_unstemmed A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis
title_short A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis
title_sort crowdsourcing approach to developing and assessing prediction algorithms for aml prognosis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924788/
https://www.ncbi.nlm.nih.gov/pubmed/27351836
http://dx.doi.org/10.1371/journal.pcbi.1004890
work_keys_str_mv AT norendavidp acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT longbyronl acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT norelraquel acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT rrhissorrakraikahn acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT hesskenneth acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT huchenyuewendy acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT bisbergalexj acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT schultzandre acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT engquisterik acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT liuli acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT linxihui acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT chengregorym acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT xiehonglei acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT huntergeoffreyam acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT boutrospaulc acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT stepanovoleg acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT normanthea acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT friendstephenh acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT stolovitzkygustavo acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT kornblausteven acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT qutubaminaa acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT norendavidp crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT longbyronl crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT norelraquel crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT rrhissorrakraikahn crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT hesskenneth crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT huchenyuewendy crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT bisbergalexj crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT schultzandre crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT engquisterik crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT liuli crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT linxihui crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT chengregorym crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT xiehonglei crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT huntergeoffreyam crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT boutrospaulc crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT stepanovoleg crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT normanthea crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT friendstephenh crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT stolovitzkygustavo crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT kornblausteven crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis
AT qutubaminaa crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis