Cargando…
A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis
Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities underlying AML are extremely heterogeneous among patients, making prognosis and treatment selection very difficult. While clinical proteomics data has the potential to improve prognosis accuracy, thus far, the qu...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924788/ https://www.ncbi.nlm.nih.gov/pubmed/27351836 http://dx.doi.org/10.1371/journal.pcbi.1004890 |
_version_ | 1782439925577154560 |
---|---|
author | Noren, David P. Long, Byron L. Norel, Raquel Rrhissorrakrai, Kahn Hess, Kenneth Hu, Chenyue Wendy Bisberg, Alex J. Schultz, Andre Engquist, Erik Liu, Li Lin, Xihui Chen, Gregory M. Xie, Honglei Hunter, Geoffrey A. M. Boutros, Paul C. Stepanov, Oleg Norman, Thea Friend, Stephen H. Stolovitzky, Gustavo Kornblau, Steven Qutub, Amina A. |
author_facet | Noren, David P. Long, Byron L. Norel, Raquel Rrhissorrakrai, Kahn Hess, Kenneth Hu, Chenyue Wendy Bisberg, Alex J. Schultz, Andre Engquist, Erik Liu, Li Lin, Xihui Chen, Gregory M. Xie, Honglei Hunter, Geoffrey A. M. Boutros, Paul C. Stepanov, Oleg Norman, Thea Friend, Stephen H. Stolovitzky, Gustavo Kornblau, Steven Qutub, Amina A. |
author_sort | Noren, David P. |
collection | PubMed |
description | Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities underlying AML are extremely heterogeneous among patients, making prognosis and treatment selection very difficult. While clinical proteomics data has the potential to improve prognosis accuracy, thus far, the quantitative means to do so have yet to be developed. Here we report the results and insights gained from the DREAM 9 Acute Myeloid Prediction Outcome Prediction Challenge (AML-OPC), a crowdsourcing effort designed to promote the development of quantitative methods for AML prognosis prediction. We identify the most accurate and robust models in predicting patient response to therapy, remission duration, and overall survival. We further investigate patient response to therapy, a clinically actionable prediction, and find that patients that are classified as resistant to therapy are harder to predict than responsive patients across the 31 models submitted to the challenge. The top two performing models, which held a high sensitivity to these patients, substantially utilized the proteomics data to make predictions. Using these models, we also identify which signaling proteins were useful in predicting patient therapeutic response. |
format | Online Article Text |
id | pubmed-4924788 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49247882016-07-18 A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis Noren, David P. Long, Byron L. Norel, Raquel Rrhissorrakrai, Kahn Hess, Kenneth Hu, Chenyue Wendy Bisberg, Alex J. Schultz, Andre Engquist, Erik Liu, Li Lin, Xihui Chen, Gregory M. Xie, Honglei Hunter, Geoffrey A. M. Boutros, Paul C. Stepanov, Oleg Norman, Thea Friend, Stephen H. Stolovitzky, Gustavo Kornblau, Steven Qutub, Amina A. PLoS Comput Biol Research Article Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities underlying AML are extremely heterogeneous among patients, making prognosis and treatment selection very difficult. While clinical proteomics data has the potential to improve prognosis accuracy, thus far, the quantitative means to do so have yet to be developed. Here we report the results and insights gained from the DREAM 9 Acute Myeloid Prediction Outcome Prediction Challenge (AML-OPC), a crowdsourcing effort designed to promote the development of quantitative methods for AML prognosis prediction. We identify the most accurate and robust models in predicting patient response to therapy, remission duration, and overall survival. We further investigate patient response to therapy, a clinically actionable prediction, and find that patients that are classified as resistant to therapy are harder to predict than responsive patients across the 31 models submitted to the challenge. The top two performing models, which held a high sensitivity to these patients, substantially utilized the proteomics data to make predictions. Using these models, we also identify which signaling proteins were useful in predicting patient therapeutic response. Public Library of Science 2016-06-28 /pmc/articles/PMC4924788/ /pubmed/27351836 http://dx.doi.org/10.1371/journal.pcbi.1004890 Text en © 2016 Noren et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Noren, David P. Long, Byron L. Norel, Raquel Rrhissorrakrai, Kahn Hess, Kenneth Hu, Chenyue Wendy Bisberg, Alex J. Schultz, Andre Engquist, Erik Liu, Li Lin, Xihui Chen, Gregory M. Xie, Honglei Hunter, Geoffrey A. M. Boutros, Paul C. Stepanov, Oleg Norman, Thea Friend, Stephen H. Stolovitzky, Gustavo Kornblau, Steven Qutub, Amina A. A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis |
title | A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis |
title_full | A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis |
title_fullStr | A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis |
title_full_unstemmed | A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis |
title_short | A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis |
title_sort | crowdsourcing approach to developing and assessing prediction algorithms for aml prognosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924788/ https://www.ncbi.nlm.nih.gov/pubmed/27351836 http://dx.doi.org/10.1371/journal.pcbi.1004890 |
work_keys_str_mv | AT norendavidp acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT longbyronl acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT norelraquel acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT rrhissorrakraikahn acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT hesskenneth acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT huchenyuewendy acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT bisbergalexj acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT schultzandre acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT engquisterik acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT liuli acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT linxihui acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT chengregorym acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT xiehonglei acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT huntergeoffreyam acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT boutrospaulc acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT stepanovoleg acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT normanthea acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT friendstephenh acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT stolovitzkygustavo acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT kornblausteven acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT qutubaminaa acrowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT norendavidp crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT longbyronl crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT norelraquel crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT rrhissorrakraikahn crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT hesskenneth crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT huchenyuewendy crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT bisbergalexj crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT schultzandre crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT engquisterik crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT liuli crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT linxihui crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT chengregorym crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT xiehonglei crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT huntergeoffreyam crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT boutrospaulc crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT stepanovoleg crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT normanthea crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT friendstephenh crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT stolovitzkygustavo crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT kornblausteven crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis AT qutubaminaa crowdsourcingapproachtodevelopingandassessingpredictionalgorithmsforamlprognosis |