Cargando…
One-Class Support Vector Machines Identify the Language and Default Mode Regions As Common Patterns of Structural Alterations in Young Children with Autism Spectrum Disorders
The identification of reliable brain endophenotypes of autism spectrum disorders (ASD) has been hampered to date by the heterogeneity in the neuroanatomical abnormalities detected in this condition. To handle the complexity of neuroimaging data and to convert brain images in informative biomarkers o...
Autores principales: | Retico, Alessandra, Gori, Ilaria, Giuliano, Alessia, Muratori, Filippo, Calderoni, Sara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4925658/ https://www.ncbi.nlm.nih.gov/pubmed/27445675 http://dx.doi.org/10.3389/fnins.2016.00306 |
Ejemplares similares
-
Rehabilitative Interventions and Brain Plasticity in Autism Spectrum Disorders: Focus on MRI-Based Studies
por: Calderoni, Sara, et al.
Publicado: (2016) -
Evaluation of Altered Functional Connections in Male Children With Autism Spectrum Disorders on Multiple-Site Data Optimized With Machine Learning
por: Spera, Giovanna, et al.
Publicado: (2019) -
The effect of gender on the neuroanatomy of children with autism spectrum disorders: a support vector machine case-control study
por: Retico, Alessandra, et al.
Publicado: (2016) -
The Broad Autism (Endo)Phenotype: Neurostructural and Neurofunctional Correlates in Parents of Individuals with Autism Spectrum Disorders
por: Billeci, Lucia, et al.
Publicado: (2016) -
Impact of sleep disorders on behavioral issues in preschoolers with autism spectrum disorder
por: Distefano, Giacomo, et al.
Publicado: (2023)