Cargando…
Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines
Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines (S2Ms), a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and...
Autores principales: | Neftci, Emre O., Pedroni, Bruno U., Joshi, Siddharth, Al-Shedivat, Maruan, Cauwenberghs, Gert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4925698/ https://www.ncbi.nlm.nih.gov/pubmed/27445650 http://dx.doi.org/10.3389/fnins.2016.00241 |
Ejemplares similares
-
Memory-Efficient Synaptic Connectivity for Spike-Timing- Dependent Plasticity
por: Pedroni, Bruno U., et al.
Publicado: (2019) -
Neural and Synaptic Array Transceiver: A Brain-Inspired Computing Framework for Embedded Learning
por: Detorakis, Georgios, et al.
Publicado: (2018) -
Event-driven contrastive divergence for spiking neuromorphic systems
por: Neftci, Emre, et al.
Publicado: (2014) -
Event-driven contrastive divergence: neural sampling foundations
por: Neftci, Emre, et al.
Publicado: (2015) -
Neural sampling machine with stochastic synapse allows brain-like learning and inference
por: Dutta, Sourav, et al.
Publicado: (2022)