Cargando…
Cyclophilin A protects mice against infection by influenza A virus
Our previous studies indicate that Cyclophilin A (CypA) impairs the replication of influenza A virus in vitro. To further evaluate the antiviral functions of CypA and explore its mechanism, transgenic mice with overexpression of CypA by two specific promoters with SPC (CypA-SPC) or CMV (CypA-CMV) we...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926061/ https://www.ncbi.nlm.nih.gov/pubmed/27354005 http://dx.doi.org/10.1038/srep28978 |
Sumario: | Our previous studies indicate that Cyclophilin A (CypA) impairs the replication of influenza A virus in vitro. To further evaluate the antiviral functions of CypA and explore its mechanism, transgenic mice with overexpression of CypA by two specific promoters with SPC (CypA-SPC) or CMV (CypA-CMV) were developed. After challenge with the A/WSN/33(H1N1) influenza virus, CypA-SPC and CypA-CMV transgenic mice displayed nearly 2.5- and 3.8-fold stronger disease resistance to virus infection, respectively, compared to wild-type animals. Virus replication, pathological lesions and inflammatory cytokines were substantially reduced in both lines of transgenic mice. In addition, after infection there was an upregulation of genes associated with cell migration, immune function, and organ development; and a downregulation of genes associated with the positive regulation of immune cells and apoptosis in the peritoneal macrophages of CypA-overexpressing transgenic mice (CypA+). These results indicate that CypA is a key modulator of influenza virus resistance in mice, and that CypA+ mice constitutes an important model to study the roles of CypA in the regulation of immune responses and infections. |
---|