Cargando…

Subsurface Super-resolution Imaging of Unstained Polymer Nanostructures

Optical imaging has offered unique advantages in material researches, such as spectroscopy and lifetime measurements of deeply embedded materials, which cannot be matched using electron or scanning-probe microscopy. Unfortunately, conventional optical imaging cannot provide the spatial resolutions n...

Descripción completa

Detalles Bibliográficos
Autores principales: Urban, Ben E., Dong, Biqin, Nguyen, The-Quyen, Backman, Vadim, Sun, Cheng, Zhang, Hao F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926209/
https://www.ncbi.nlm.nih.gov/pubmed/27354178
http://dx.doi.org/10.1038/srep28156
Descripción
Sumario:Optical imaging has offered unique advantages in material researches, such as spectroscopy and lifetime measurements of deeply embedded materials, which cannot be matched using electron or scanning-probe microscopy. Unfortunately, conventional optical imaging cannot provide the spatial resolutions necessary for many nanoscopic studies. Despite recent rapid progress, super-resolution optical imaging has yet to be widely applied to non-biological materials. Herein we describe a method for nanoscopic optical imaging of buried polymer nanostructures without the need for extrinsic staining. We observed intrinsic stochastic fluorescence emission or blinking from unstained polymers and performed spatial-temporal spectral analysis to investigate its origin. We further applied photon localization super-resolution imaging reconstruction to the detected stochastic blinking, and achieved a spatial resolution of at least 100 nm, which corresponds to a six-fold increase over the optical diffraction limit. This work demonstrates the potential for studying the static heterogeneities of intrinsic polymer molecular-specific properties at sub-diffraction-limited optical resolutions.