Cargando…

Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing

Xenotransplantation from pigs could alleviate the shortage of human tissues and organs for transplantation. Means have been identified to overcome hyperacute rejection and acute vascular rejection mechanisms mounted by the recipient. The challenge is to combine multiple genetic modifications to enab...

Descripción completa

Detalles Bibliográficos
Autores principales: Fischer, Konrad, Kraner-Scheiber, Simone, Petersen, Björn, Rieblinger, Beate, Buermann, Anna, Flisikowska, Tatiana, Flisikowski, Krzysztof, Christan, Susanne, Edlinger, Marlene, Baars, Wiebke, Kurome, Mayuko, Zakhartchenko, Valeri, Kessler, Barbara, Plotzki, Elena, Szczerbal, Izabela, Switonski, Marek, Denner, Joachim, Wolf, Eckhard, Schwinzer, Reinhard, Niemann, Heiner, Kind, Alexander, Schnieke, Angelika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926246/
https://www.ncbi.nlm.nih.gov/pubmed/27353424
http://dx.doi.org/10.1038/srep29081
_version_ 1782440072720678912
author Fischer, Konrad
Kraner-Scheiber, Simone
Petersen, Björn
Rieblinger, Beate
Buermann, Anna
Flisikowska, Tatiana
Flisikowski, Krzysztof
Christan, Susanne
Edlinger, Marlene
Baars, Wiebke
Kurome, Mayuko
Zakhartchenko, Valeri
Kessler, Barbara
Plotzki, Elena
Szczerbal, Izabela
Switonski, Marek
Denner, Joachim
Wolf, Eckhard
Schwinzer, Reinhard
Niemann, Heiner
Kind, Alexander
Schnieke, Angelika
author_facet Fischer, Konrad
Kraner-Scheiber, Simone
Petersen, Björn
Rieblinger, Beate
Buermann, Anna
Flisikowska, Tatiana
Flisikowski, Krzysztof
Christan, Susanne
Edlinger, Marlene
Baars, Wiebke
Kurome, Mayuko
Zakhartchenko, Valeri
Kessler, Barbara
Plotzki, Elena
Szczerbal, Izabela
Switonski, Marek
Denner, Joachim
Wolf, Eckhard
Schwinzer, Reinhard
Niemann, Heiner
Kind, Alexander
Schnieke, Angelika
author_sort Fischer, Konrad
collection PubMed
description Xenotransplantation from pigs could alleviate the shortage of human tissues and organs for transplantation. Means have been identified to overcome hyperacute rejection and acute vascular rejection mechanisms mounted by the recipient. The challenge is to combine multiple genetic modifications to enable normal animal breeding and meet the demand for transplants. We used two methods to colocate xenoprotective transgenes at one locus, sequential targeted transgene placement - ‘gene stacking’, and cointegration of multiple engineered large vectors - ‘combineering’, to generate pigs carrying modifications considered necessary to inhibit short to mid-term xenograft rejection. Pigs were generated by serial nuclear transfer and analysed at intermediate stages. Human complement inhibitors CD46, CD55 and CD59 were abundantly expressed in all tissues examined, human HO1 and human A20 were widely expressed. ZFN or CRISPR/Cas9 mediated homozygous GGTA1 and CMAH knockout abolished α-Gal and Neu5Gc epitopes. Cells from multi-transgenic piglets showed complete protection against human complement-mediated lysis, even before GGTA1 knockout. Blockade of endothelial activation reduced TNFα-induced E-selectin expression, IFNγ-induced MHC class-II upregulation and TNFα/cycloheximide caspase induction. Microbial analysis found no PERV-C, PCMV or 13 other infectious agents. These animals are a major advance towards clinical porcine xenotransplantation and demonstrate that livestock engineering has come of age.
format Online
Article
Text
id pubmed-4926246
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49262462016-07-01 Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing Fischer, Konrad Kraner-Scheiber, Simone Petersen, Björn Rieblinger, Beate Buermann, Anna Flisikowska, Tatiana Flisikowski, Krzysztof Christan, Susanne Edlinger, Marlene Baars, Wiebke Kurome, Mayuko Zakhartchenko, Valeri Kessler, Barbara Plotzki, Elena Szczerbal, Izabela Switonski, Marek Denner, Joachim Wolf, Eckhard Schwinzer, Reinhard Niemann, Heiner Kind, Alexander Schnieke, Angelika Sci Rep Article Xenotransplantation from pigs could alleviate the shortage of human tissues and organs for transplantation. Means have been identified to overcome hyperacute rejection and acute vascular rejection mechanisms mounted by the recipient. The challenge is to combine multiple genetic modifications to enable normal animal breeding and meet the demand for transplants. We used two methods to colocate xenoprotective transgenes at one locus, sequential targeted transgene placement - ‘gene stacking’, and cointegration of multiple engineered large vectors - ‘combineering’, to generate pigs carrying modifications considered necessary to inhibit short to mid-term xenograft rejection. Pigs were generated by serial nuclear transfer and analysed at intermediate stages. Human complement inhibitors CD46, CD55 and CD59 were abundantly expressed in all tissues examined, human HO1 and human A20 were widely expressed. ZFN or CRISPR/Cas9 mediated homozygous GGTA1 and CMAH knockout abolished α-Gal and Neu5Gc epitopes. Cells from multi-transgenic piglets showed complete protection against human complement-mediated lysis, even before GGTA1 knockout. Blockade of endothelial activation reduced TNFα-induced E-selectin expression, IFNγ-induced MHC class-II upregulation and TNFα/cycloheximide caspase induction. Microbial analysis found no PERV-C, PCMV or 13 other infectious agents. These animals are a major advance towards clinical porcine xenotransplantation and demonstrate that livestock engineering has come of age. Nature Publishing Group 2016-06-29 /pmc/articles/PMC4926246/ /pubmed/27353424 http://dx.doi.org/10.1038/srep29081 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Fischer, Konrad
Kraner-Scheiber, Simone
Petersen, Björn
Rieblinger, Beate
Buermann, Anna
Flisikowska, Tatiana
Flisikowski, Krzysztof
Christan, Susanne
Edlinger, Marlene
Baars, Wiebke
Kurome, Mayuko
Zakhartchenko, Valeri
Kessler, Barbara
Plotzki, Elena
Szczerbal, Izabela
Switonski, Marek
Denner, Joachim
Wolf, Eckhard
Schwinzer, Reinhard
Niemann, Heiner
Kind, Alexander
Schnieke, Angelika
Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing
title Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing
title_full Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing
title_fullStr Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing
title_full_unstemmed Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing
title_short Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing
title_sort efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926246/
https://www.ncbi.nlm.nih.gov/pubmed/27353424
http://dx.doi.org/10.1038/srep29081
work_keys_str_mv AT fischerkonrad efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT kranerscheibersimone efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT petersenbjorn efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT rieblingerbeate efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT buermannanna efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT flisikowskatatiana efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT flisikowskikrzysztof efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT christansusanne efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT edlingermarlene efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT baarswiebke efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT kuromemayuko efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT zakhartchenkovaleri efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT kesslerbarbara efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT plotzkielena efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT szczerbalizabela efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT switonskimarek efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT dennerjoachim efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT wolfeckhard efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT schwinzerreinhard efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT niemannheiner efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT kindalexander efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting
AT schniekeangelika efficientproductionofmultimodifiedpigsforxenotransplantationbycombineeringgenestackingandgeneediting