Cargando…
Review on Graph Clustering and Subgraph Similarity Based Analysis of Neurological Disorders
How can complex relationships among molecular or clinico-pathological entities of neurological disorders be represented and analyzed? Graphs seem to be the current answer to the question no matter the type of information: molecular data, brain images or neural signals. We review a wide spectrum of g...
Autores principales: | Thomas, Jaya, Seo, Dongmin, Sael, Lee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926396/ https://www.ncbi.nlm.nih.gov/pubmed/27258269 http://dx.doi.org/10.3390/ijms17060862 |
Ejemplares similares
-
SING: Subgraph search In Non-homogeneous Graphs
por: Di Natale, Raffaele, et al.
Publicado: (2010) -
Faster algorithms for counting subgraphs in sparse graphs
por: Bressan, Marco
Publicado: (2021) -
Subgraph extraction and graph representation learning for single cell Hi-C imputation and clustering
por: Zheng, Jiahao, et al.
Publicado: (2023) -
Mining subgraph coverage patterns from graph transactions
por: Reddy, A. Srinivas, et al.
Publicado: (2021) -
Subgraph Learning for Topological Geolocalization with Graph Neural Networks
por: Zha, Bing, et al.
Publicado: (2023)